A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.12.062
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Li, Xiaoke & Zhu, Heng & Chen, Zhenzhong & Ming, Wuyi & Cao, Yang & He, Wenbin & Ma, Jun, 2022. "Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Oh, Ki-Yong & Nam, Woochul & Ryu, Moo Sung & Kim, Ji-Young & Epureanu, Bogdan I., 2018. "A review of foundations of offshore wind energy convertors: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 16-36.
- Chen, Chaohe & Ma, Yuan & Fan, Tianhui, 2022. "Review of model experimental methods focusing on aerodynamic simulation of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Fabian Vorpahl & Holger Schwarze & Tim Fischer & Marc Seidel & Jason Jonkman, 2013. "Offshore wind turbine environment, loads, simulation, and design," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(5), pages 548-570, September.
- Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
- Clark, Caitlyn E. & DuPont, Bryony, 2018. "Reliability-based design optimization in offshore renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 390-400.
- Alexandre Mathern & Christoph von der Haar & Steffen Marx, 2021. "Concrete Support Structures for Offshore Wind Turbines: Current Status, Challenges, and Future Trends," Energies, MDPI, vol. 14(7), pages 1-31, April.
- Al-Sanad, Shaikha & Wang, Lin & Parol, Jafarali & Kolios, Athanasios, 2021. "Reliability-based design optimisation framework for wind turbine towers," Renewable Energy, Elsevier, vol. 167(C), pages 942-953.
- Zanuttigh, Barbara & Angelelli, Elisa & Kortenhaus, Andreas & Koca, Kaan & Krontira, Yukiko & Koundouri, Phoebe, 2016. "A methodology for multi-criteria design of multi-use offshore platforms for marine renewable energy harvesting," Renewable Energy, Elsevier, vol. 85(C), pages 1271-1289.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jia-Qi, Liu & Yun-Wen, Feng & Cheng, Lu & Wei-Huang, Pan, 2024. "Decomposed-coordinated framework with intelligent extremum network for operational reliability analysis of complex system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Hengfei Yang & Shiyuan Yang & Debiao Meng & Chenghao Hu & Chaosheng Wu & Bo Yang & Peng Nie & Yuan Si & Xiaoyan Su, 2024. "Optimization of Analog Circuit Parameters Using Bidirectional Long Short-Term Memory Coupled with an Enhanced Whale Optimization Algorithm," Mathematics, MDPI, vol. 13(1), pages 1-24, December.
- Wang, Xiaoping & Zhao, Wei & Chen, Yangyang & Li, Xueyan, 2024. "A novel performance measure approach for reliability-based design optimization with adaptive Barzilai-Borwein steps," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Shiyuan Yang & Hongtao Wang & Yihe Xu & Yongqiang Guo & Lidong Pan & Jiaming Zhang & Xinkai Guo & Debiao Meng & Jiapeng Wang, 2023. "A Coupled Simulated Annealing and Particle Swarm Optimization Reliability-Based Design Optimization Strategy under Hybrid Uncertainties," Mathematics, MDPI, vol. 11(23), pages 1-26, November.
- Jianxiong Gao & Yuanyuan Liu & Yiping Yuan & Fei Heng, 2023. "Residual Strength Modeling and Reliability Analysis of Wind Turbine Gear under Different Random Loadings," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
- Han, Fucheng & Wang, Wenhua & Zheng, Xiao-Wei & Han, Xu & Shi, Wei & Li, Xin, 2025. "Investigation of essential parameters for the design of offshore wind turbine based on structural reliability," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
- Cheng, Biyi & Yao, Yingxue & Qu, Xiaobin & Zhou, Zhiming & Wei, Jionghui & Liang, Ertang & Zhang, Chengcheng & Kang, Hanwen & Wang, Hongjun, 2024. "Multi-objective parameter optimization of large-scale offshore wind Turbine's tower based on data-driven model with deep learning and machine learning methods," Energy, Elsevier, vol. 305(C).
- Lai, Xiongming & Yang, Tao & Zhang, Yong & Wang, Cheng & Liao, Shuirong & Zeng, Xianbiao & Zhang, Xiaodong, 2025. "A new hybrid inverse reliability method for searching MPTP and its application in reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Zhan, Hongyou & Xiao, Ning-Cong, 2025. "A new active learning surrogate model for time- and space-dependent system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Salkhordeh Haghighi, Mohammad & Amini, Ramin & Keshtegar, Behrooz, 2024. "Performance assessment of new reliability index of energy in water distribution networks equipped with PATs based on component simultaneous failure scenarios," Renewable Energy, Elsevier, vol. 237(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Azam, Ali & Ahmed, Ammar & Yi, Minyi & Zhang, Zutao & Zhang, Zeqiang & Aslam, Touqeer & Mugheri, Shoukat Ali & Abdelrahman, Mansour & Ali, Asif & Qi, Lingfei, 2024. "Wave energy evolution: Knowledge structure, advancements, challenges and future opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
- Ramezani, Mahyar & Choe, Do-Eun & Heydarpour, Khashayar & Koo, Bonjun, 2023. "Uncertainty models for the structural design of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Anthony Roy & François Auger & Florian Dupriez-Robin & Salvy Bourguet & Quoc Tuan Tran, 2018. "Electrical Power Supply of Remote Maritime Areas: A Review of Hybrid Systems Based on Marine Renewable Energies," Energies, MDPI, vol. 11(7), pages 1-27, July.
- Yunsup Shin & Thomas Langford & Kyunghwan Cho & Jongheon Park & Junyoung Ko, 2021. "Applicability of Concrete–Steel Composite Piles for Offshore Wind Foundations," Energies, MDPI, vol. 14(16), pages 1-15, August.
- Agnieszka A. Tubis & Katarzyna Grzybowska, 2022. "In Search of Industry 4.0 and Logistics 4.0 in Small-Medium Enterprises—A State of the Art Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
- Qu, Yang & Hooper, Tara & Austen, Melanie C. & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Development of a computable general equilibrium model based on integrated macroeconomic framework for ocean multi-use between offshore wind farms and fishing activities in Scotland," Applied Energy, Elsevier, vol. 332(C).
- Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
- Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
- Escalera Mendoza, Alejandra S. & Griffith, D. Todd & Jeong, Michael & Qin, Chris & Loth, Eric & Phadnis, Mandar & Pao, Lucy & Selig, Michael S., 2023. "Aero-structural rapid screening of new design concepts for offshore wind turbines," Renewable Energy, Elsevier, vol. 219(P2).
- Ahmed Al-Ajmi & Yingzhao Wang & Siniša Djurović, 2021. "Wind Turbine Generator Controller Signals Supervised Machine Learning for Shaft Misalignment Fault Detection: A Doubly Fed Induction Generator Practical Case Study," Energies, MDPI, vol. 14(6), pages 1-15, March.
- Nam, Woochul & Oh, Ki-Yong & Epureanu, Bogdan I., 2019. "Evolution of the dynamic response and its effects on the serviceability of offshore wind turbines with stochastic loads and soil degradation," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 151-163.
- Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
- Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
- Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
- Abbas, Nikhar J. & Jasa, John & Zalkind, Daniel S. & Wright, Alan & Pao, Lucy, 2024. "Control co-design of a floating offshore wind turbine," Applied Energy, Elsevier, vol. 353(PB).
- repec:eco:journ2:2017-04-06 is not listed on IDEAS
- Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
- Dan Li & Hongbing Bao & Ning Zhao, 2023. "Research of Turbine Tower Optimization Based on Criterion Method," Energies, MDPI, vol. 16(2), pages 1-17, January.
- Laura Schröder & Nikolay Krasimirov Dimitrov & David Robert Verelst & John Aasted Sørensen, 2022. "Using Transfer Learning to Build Physics-Informed Machine Learning Models for Improved Wind Farm Monitoring," Energies, MDPI, vol. 15(2), pages 1-21, January.
- Hao Zhao & Hongjie Zheng & Jijian Lian, 2022. "Experimental Study on Static Pressure Sedimentation for a Thick-Walled Bucket Foundation in Sand," Energies, MDPI, vol. 15(16), pages 1-15, August.
More about this item
Keywords
Reliability-based multidisciplinary design optimization; Adaptive kriging model; Decoupling strategy; Offshore wind turbine tower;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:203:y:2023:i:c:p:407-420. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.