IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v396y2025ics030626192500933x.html

Wind turbine control co-design using dynamic system derivative function surrogate model (DFSM) based on OpenFAST linearization

Author

Listed:
  • Lee, Yong Hoon
  • Bayat, Saeid
  • Allison, James T.

Abstract

This research presents a comprehensive control co-design (CCD) framework for wind turbine systems, integrating nonlinear derivative function surrogate models (DFSMs) developed through OpenFAST linearization and data-driven approaches. The primary motivation for developing the DFSM is to accurately capture the nonlinear dynamics of wind turbine systems in a computationally efficient manner, thereby enabling effective and scalable optimization within the CCD framework. The developed DFSMs successfully represent state derivatives and system output responses across extensive ranges of plant, control, and state variables, validated against direct simulation outputs. By concurrently optimizing plant and control designs, the CCD approach leverages their synergistic interactions, resulting in significant reductions in the levelized cost of energy (LCOE) through an optimized balance of annual energy production (AEP) and costs associated with plant design parameters, while adhering to design and physical constraints. Comparative analyses demonstrate that CCD, particularly when utilizing open-loop optimal control (OLOC), outperforms traditional closed-loop control (CLC) strategies. Sensitivity and sparsity analyses reveal critical interdependencies among design variables, emphasizing key input–output parameter relationships that guide targeted design optimizations. These studies build on pioneering DFSM work that was limited to a handful of design and state variables; this work advances DFSM capabilities to the level of practical utility in engineering design for the first time. The work presented here serves as a foundational exploration; authors advocate for future research to incorporate broader constraints and other considerations to further advance CCD methodologies for wind turbine system optimization.

Suggested Citation

  • Lee, Yong Hoon & Bayat, Saeid & Allison, James T., 2025. "Wind turbine control co-design using dynamic system derivative function surrogate model (DFSM) based on OpenFAST linearization," Applied Energy, Elsevier, vol. 396(C).
  • Handle: RePEc:eee:appene:v:396:y:2025:i:c:s030626192500933x
    DOI: 10.1016/j.apenergy.2025.126203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192500933X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Qi Zhang & Yizhong Wu & Li Lu, 2022. "A Novel Surrogate Model-Based Solving Framework for the Black-Box Dynamic Co-Design and Optimization Problem in the Dynamic System," Mathematics, MDPI, vol. 10(18), pages 1-26, September.
    2. Meng, Debiao & Yang, Shiyuan & Jesus, Abílio M.P. de & Zhu, Shun-Peng, 2023. "A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower," Renewable Energy, Elsevier, vol. 203(C), pages 407-420.
    3. Gualtieri, Giovanni & Secci, Sauro, 2012. "Methods to extrapolate wind resource to the turbine hub height based on power law: A 1-h wind speed vs. Weibull distribution extrapolation comparison," Renewable Energy, Elsevier, vol. 43(C), pages 183-200.
    4. Abbas, Nikhar J. & Jasa, John & Zalkind, Daniel S. & Wright, Alan & Pao, Lucy, 2024. "Control co-design of a floating offshore wind turbine," Applied Energy, Elsevier, vol. 353(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    2. Abhnil Prasad & Merlinde Kay, 2025. "Mapping Solar–Wind Complementarity with BARRA," Energies, MDPI, vol. 18(20), pages 1-21, October.
    3. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    4. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    5. Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.
    6. Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
    7. Cheng, Biyi & Yao, Yingxue & Qu, Xiaobin & Zhou, Zhiming & Wei, Jionghui & Liang, Ertang & Zhang, Chengcheng & Kang, Hanwen & Wang, Hongjun, 2024. "Multi-objective parameter optimization of large-scale offshore wind Turbine's tower based on data-driven model with deep learning and machine learning methods," Energy, Elsevier, vol. 305(C).
    8. Hengfei Yang & Shiyuan Yang & Debiao Meng & Chenghao Hu & Chaosheng Wu & Bo Yang & Peng Nie & Yuan Si & Xiaoyan Su, 2024. "Optimization of Analog Circuit Parameters Using Bidirectional Long Short-Term Memory Coupled with an Enhanced Whale Optimization Algorithm," Mathematics, MDPI, vol. 13(1), pages 1-24, December.
    9. Han, Fucheng & Wang, Wenhua & Zheng, Xiao-Wei & Han, Xu & Shi, Wei & Li, Xin, 2025. "Investigation of essential parameters for the design of offshore wind turbine based on structural reliability," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    10. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    11. Sharma, Rakesh & Dutta, Pradip & Murthy, S.Srinivasa, 2024. "Application of hydrogen storage in polygeneration microgrids: Case study of wind microgrid in India," Energy, Elsevier, vol. 311(C).
    12. Yuqing Yang & Stephen Bremner & Chris Menictas & Merlinde Kay, 2019. "A Mixed Receding Horizon Control Strategy for Battery Energy Storage System Scheduling in a Hybrid PV and Wind Power Plant with Different Forecast Techniques," Energies, MDPI, vol. 12(12), pages 1-25, June.
    13. Gao, Yang & Ma, Shaoxiu & Wang, Tao & Miao, Changhong & Yang, Fan, 2022. "Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy," Energy, Elsevier, vol. 258(C).
    14. Keramatinejad, Mahdi & Karbasian, Mahdi & Alimohammadi, Hamidreza & Atashgar, Karim, 2025. "A hybrid approach of adaptive surrogate model and sampling method for reliability assessment in multidisciplinary design optimization," Reliability Engineering and System Safety, Elsevier, vol. 261(C).
    15. Lai, Xiongming & Yang, Tao & Zhang, Yong & Wang, Cheng & Liao, Shuirong & Zeng, Xianbiao & Zhang, Xiaodong, 2025. "A new hybrid inverse reliability method for searching MPTP and its application in reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    16. Travaglini, Riccardo & Papi, Francesco & Bianchini, Alessandro, 2025. "Floating wind farms in sea basins with moderate wind speeds: a critical assessment of the potential of low-specific-power turbines in reducing the LCoE," Renewable and Sustainable Energy Reviews, Elsevier, vol. 222(C).
    17. Jianxiong Gao & Yuanyuan Liu & Yiping Yuan & Fei Heng, 2023. "Residual Strength Modeling and Reliability Analysis of Wind Turbine Gear under Different Random Loadings," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    18. Parada, Leandro & Herrera, Carlos & Flores, Paulo & Parada, Victor, 2018. "Assessing the energy benefit of using a wind turbine micro-siting model," Renewable Energy, Elsevier, vol. 118(C), pages 591-601.
    19. Arias-Rosales, Andrés & Osorio-Gómez, Gilberto, 2018. "Wind turbine selection method based on the statistical analysis of nominal specifications for estimating the cost of energy," Applied Energy, Elsevier, vol. 228(C), pages 980-998.
    20. Laura Castro-Santos & Elson Martins & C. Guedes Soares, 2016. "Methodology to Calculate the Costs of a Floating Offshore Renewable Energy Farm," Energies, MDPI, vol. 9(5), pages 1-27, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:396:y:2025:i:c:s030626192500933x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.