IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544224040258.html
   My bibliography  Save this article

An integrated design framework of floating wind turbine based on surrogate-assisted many-objective optimization

Author

Listed:
  • Wu, Zhou
  • Yang, Hanshi
  • Liu, Jiepeng
  • Feng, Liang
  • Qi, Hongtuo
  • Zhang, Yongfeng
  • Yang, Zhile

Abstract

The optimal design of floating wind turbines (FWTs) is an integrated many-objective task in which the costs of components, power quality, and other system performance are the primary concerns. The application of multi-objective evolutionary algorithms (MOEAs) is challenging due to the function evaluations are computationally expensive. Therefore, we propose a surrogate-assisted constrained many-objective optimization framework (SCM) to enhance the efficiency of MOEAs in solving the problem. Firstly, an initial surrogate model is constructed using data generated by the MOEAs. Then, a cooperative surrogate-assisted evolutionary search strategy is proposed. It uses the surrogate model to filter out poor solutions and provide more evolutionary resources for solutions with better convergence, diversity, and feasibility. Further, a balanced sampling strategy is proposed to update the surrogate model online. Moreover, when the population evolves into the later stage, the MOEAs are used instead of cooperative surrogate-assisted evolutionary search to ensure that the solutions are uniformly distributed on the true Pareto front. Finally, the SCM is verified in an integrated many-objective optimal design (IMOOD) problem. Under the critical design load case (DLC), SCM can obtain a FWT design set with convergence, diversity, and feasibility in a smaller number of function evaluations (FEs).

Suggested Citation

  • Wu, Zhou & Yang, Hanshi & Liu, Jiepeng & Feng, Liang & Qi, Hongtuo & Zhang, Yongfeng & Yang, Zhile, 2025. "An integrated design framework of floating wind turbine based on surrogate-assisted many-objective optimization," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544224040258
    DOI: 10.1016/j.energy.2024.134247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224040258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Binzhen & Hu, Jianjian & Jin, Peng & Sun, Ke & Li, Ye & Ning, Dezhi, 2023. "Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system," Energy, Elsevier, vol. 265(C).
    2. Arabgolarcheh, Alireza & Micallef, Daniel & Benini, Ernesto, 2023. "The impact of platform motion phase differences on the power and load performance of tandem floating offshore wind turbines," Energy, Elsevier, vol. 284(C).
    3. Leimeister, Mareike & Kolios, Athanasios, 2021. "Reliability-based design optimization of a spar-type floating offshore wind turbine support structure," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Yang, Can & Cheng, Zhengshun & Xiao, Longfei & Tian, Xinliang & Liu, Mingyue & Wen, Binrong, 2022. "A gradient-descent-based method for design of performance-scaled rotor for floating wind turbine model testing in wave basins," Renewable Energy, Elsevier, vol. 187(C), pages 144-155.
    5. Rebecca J. Barthelmie & Gunner C. Larsen & Sara C. Pryor, 2023. "Modeling Annual Electricity Production and Levelized Cost of Energy from the US East Coast Offshore Wind Energy Lease Areas," Energies, MDPI, vol. 16(12), pages 1-29, June.
    6. Barter, Garrett E. & Sethuraman, Latha & Bortolotti, Pietro & Keller, Jonathan & Torrey, David A., 2023. "Beyond 15 MW: A cost of energy perspective on the next generation of drivetrain technologies for offshore wind turbines," Applied Energy, Elsevier, vol. 344(C).
    7. Meng, Debiao & Yang, Shiyuan & Jesus, Abílio M.P. de & Zhu, Shun-Peng, 2023. "A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower," Renewable Energy, Elsevier, vol. 203(C), pages 407-420.
    8. Victor Benifla & Frank Adam, 2022. "Development of a Genetic Algorithm Code for the Design of Cylindrical Buoyancy Bodies for Floating Offshore Wind Turbine Substructures," Energies, MDPI, vol. 15(3), pages 1-24, February.
    9. Lee, Hyebin & Poguluri, Sunny Kumar & Bae, Yoon Hyeok, 2022. "Development and verification of a dynamic analysis model for floating offshore contra-rotating vertical-axis wind turbine," Energy, Elsevier, vol. 240(C).
    10. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    11. Song, Dongran & Shen, Xutao & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Huang, Chaoneng & Yang, Jian & Dong, Mi & Joo, Young Hoo, 2023. "Application of surrogate-assisted global optimization algorithm with dimension-reduction in power optimization of floating offshore wind farm," Applied Energy, Elsevier, vol. 351(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Fucheng & Wang, Wenhua & Zheng, Xiao-Wei & Han, Xu & Shi, Wei & Li, Xin, 2025. "Investigation of essential parameters for the design of offshore wind turbine based on structural reliability," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    2. Zhu, Kai & Cao, Feifei & Wang, Tianyuan & Tao, Ji & Wei, Zhiwen & Shi, Hongda, 2024. "A comparative investigation into the dynamic performance of multiple wind-wave hybrid systems utilizing a full-process analytical model," Applied Energy, Elsevier, vol. 360(C).
    3. Cao, Shugang & Cheng, Youliang & Duan, Jinlong & Li, Jinyuan & Wang, Yu, 2024. "Experimental study of a semi-submersible floating wind turbine with aquaculture cages under combined wind and irregular waves," Energy, Elsevier, vol. 306(C).
    4. Zhao, Hongbiao & Stansby, Peter & Liao, Zhijing & Li, Guang, 2024. "Multi-objective optimal control of a hybrid offshore wind turbine platform integrated with multi-float wave energy converters," Energy, Elsevier, vol. 312(C).
    5. Ma, Lianghua & Liu, Xiaoliang & Liu, Haoyang & Alizadeh, As'ad & Shamsborhan, Mahmoud, 2023. "The influence of the struts on mass diffusion system of lateral hydrogen micro jet in combustor of scramjet engine: Numerical study," Energy, Elsevier, vol. 279(C).
    6. Ziad Maksassi & Bertrand Garnier & Ahmed Ould El Moctar & Franck Schoefs & Emmanuel Schaeffer, 2022. "Thermal Characterization and Thermal Effect Assessment of Biofouling around a Dynamic Submarine Electrical Cable," Energies, MDPI, vol. 15(9), pages 1-18, April.
    7. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    8. Fan, Shuanglong & Liu, Zhenqing, 2025. "Investigation of fully coupled wind field simulations in complex terrain wind farms considering automatic upwind control of turbines," Renewable Energy, Elsevier, vol. 239(C).
    9. Deng, Wanru & Liu, Liqin & Dai, Yuanjun & Wu, Haitao & Yuan, Zhiming, 2024. "A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques," Energy, Elsevier, vol. 304(C).
    10. Shubham, Shubham & Naik, Kevin & Sachar, Shivangi & Ianakiev, Anton, 2023. "Performance analysis of low Reynolds number vertical axis wind turbines using low-fidelity and mid-fidelity methods and wind conditions in the city of Nottingham," Energy, Elsevier, vol. 279(C).
    11. Cheng, Biyi & Yao, Yingxue & Qu, Xiaobin & Zhou, Zhiming & Wei, Jionghui & Liang, Ertang & Zhang, Chengcheng & Kang, Hanwen & Wang, Hongjun, 2024. "Multi-objective parameter optimization of large-scale offshore wind Turbine's tower based on data-driven model with deep learning and machine learning methods," Energy, Elsevier, vol. 305(C).
    12. Martić, Ivana & Degiuli, Nastia & Grlj, Carlo Giorgio, 2024. "Scaling of wave energy converters for optimum performance in the Adriatic Sea," Energy, Elsevier, vol. 294(C).
    13. Li, Xiaoke & Zhu, Heng & Chen, Zhenzhong & Ming, Wuyi & Cao, Yang & He, Wenbin & Ma, Jun, 2022. "Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    14. Hengfei Yang & Shiyuan Yang & Debiao Meng & Chenghao Hu & Chaosheng Wu & Bo Yang & Peng Nie & Yuan Si & Xiaoyan Su, 2024. "Optimization of Analog Circuit Parameters Using Bidirectional Long Short-Term Memory Coupled with an Enhanced Whale Optimization Algorithm," Mathematics, MDPI, vol. 13(1), pages 1-24, December.
    15. Wang, Xinbao & Cai, Chang & Chen, Yewen & Chen, Yuejuan & Liu, Junbo & Xiao, Yang & Zhong, Xiaohui & Shi, Kezhong & Li, Qing'an, 2023. "Numerical verification of the dynamic aerodynamic similarity criterion for wind tunnel experiments of floating offshore wind turbines," Energy, Elsevier, vol. 283(C).
    16. Xu, Shuaijun & Ji, Baifeng & Xu, Fan & Chen, Changkun, 2024. "Dynamic response and power performance of a combined semi-submersible floating wind turbine and point absorber wave energy converter array," Renewable Energy, Elsevier, vol. 237(PD).
    17. Zhou, Binzhen & Huang, Xu & Lin, Chusen & Zhang, Hengming & Peng, Jiaxin & Nie, Zuli & Jin, Peng, 2024. "Experimental study of a WEC array-floating breakwater hybrid system in multiple-degree-of-freedom motion," Applied Energy, Elsevier, vol. 371(C).
    18. Baklouti, Ahmad & Dammak, Khalil & El Hami, Abdelkhalak, 2022. "Optimum reliable design of rolling element bearings using multi-objective optimization based on C-NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    19. Zhang, Ruixing & An, Liqiang & He, Lun & Yang, Xinmeng & Huang, Zenghao, 2024. "Reliability analysis and inverse optimization method for floating wind turbines driven by dual meta-models combining transient-steady responses," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    20. Lai, Xiongming & Yang, Tao & Zhang, Yong & Wang, Cheng & Liao, Shuirong & Zeng, Xianbiao & Zhang, Xiaodong, 2025. "A new hybrid inverse reliability method for searching MPTP and its application in reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 253(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544224040258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.