IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i7p1151-d1624959.html
   My bibliography  Save this article

Identification of Critical Track Sections in a Railway Station Using a Multiplex Networks Approach

Author

Listed:
  • Pengfei Gao

    (School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China)

  • Wei Zheng

    (School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China
    National Research Center of Railway Safety Assessment, Beijing Jiaotong University, Beijing 100044, China)

  • Jintao Liu

    (School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China)

  • Daohua Wu

    (School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China)

Abstract

Railway stations serve as critical nodes within transportation networks, and the efficient management of in-station track sections is vital for smooth operations. This study proposes an integrated method for identifying critical track sections, which refers to track sections with the highest static occupancy rates (HiSORTS), in railway station yards using a multiplex network framework. By modeling the station as a Railway Station Multiplex Network (RSMN) that incorporates train routes (TRs), extended routes (ERs), and shunting routes (SRs), the proposed approach overcomes the limitations of single-layer, single-metric analyses and effectively captures complex operational characteristics. Classical network metrics, including Degree Centrality (DC), Betweenness Centrality (BC), Closeness Centrality (CC), Katz Centrality (KC), and PageRank (PR), along with a custom Fusion Centrality (FC), are used to quantify track section importance. Principal Component Analysis (PCA) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) are applied to generate rankings, which are further analyzed using SHapley Additive exPlanations (SHAP)-based matrics contributions analysis. The results indicate that TR metrics contribute the most (50.3%), followed by ER (25.5%) and SR (24.2%), with KC and FC being the most influential metrics. The findings provide a robust decision-support framework for railway operations, facilitating targeted maintenance, congestion mitigation, and efficiency optimization.

Suggested Citation

  • Pengfei Gao & Wei Zheng & Jintao Liu & Daohua Wu, 2025. "Identification of Critical Track Sections in a Railway Station Using a Multiplex Networks Approach," Mathematics, MDPI, vol. 13(7), pages 1-31, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1151-:d:1624959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/7/1151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/7/1151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zemp, Stefan & Stauffacher, Michael & Lang, Daniel J. & Scholz, Roland W., 2011. "Erratum to ''Generic functions of railway stations--A conceptual basis for the development of common system understanding and assessment criteria'' [Transp. Policy 18 (2010) 446-455]," Transport Policy, Elsevier, vol. 18(4), pages 648-648, August.
    2. Wang, Wei & Cai, Kaiquan & Du, Wenbo & Wu, Xin & Tong, Lu (Carol) & Zhu, Xi & Cao, Xianbin, 2020. "Analysis of the Chinese railway system as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Yingying Xing & Jian Lu & Shengdi Chen & Sunanda Dissanayake, 2017. "Vulnerability analysis of urban rail transit based on complex network theory: a case study of Shanghai Metro," Public Transport, Springer, vol. 9(3), pages 501-525, October.
    4. Jiang, Cheng & Sun, Qian & Ye, Tanglin & Wang, Qingyun, 2023. "Identification of systemically important financial institutions in a multiplex financial network: A multi-attribute decision-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    5. Yunfang Ma & Jose M. Sallan & Oriol Lordan, 2024. "Rail Transit Networks and Network Motifs: A Review and Research Agenda," Sustainability, MDPI, vol. 16(9), pages 1-21, April.
    6. Wang, Wenhao & Wang, Yanhui & Wang, Guangxing & Li, Man & Jia, Limin, 2023. "Identification of the critical accident causative factors in the urban rail transit system by complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    7. Liu, Jintao & Schmid, Felix & Zheng, Wei & Zhu, Jiebei, 2019. "Understanding railway operational accidents using network theory," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 218-231.
    8. Yelai Feng & Huaixi Wang & Chao Chang & Hongyi Lu, 2022. "Intrinsic Correlation with Betweenness Centrality and Distribution of Shortest Paths," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    9. Zemp, Stefan & Stauffacher, Michael & Lang, Daniel J. & Scholz, Roland W., 2011. "Generic functions of railway stations--A conceptual basis for the development of common system understanding and assessment criteria," Transport Policy, Elsevier, vol. 18(2), pages 446-455, March.
    10. Bombelli, Alessandro & Santos, Bruno F. & Tavasszy, Lóránt, 2020. "Analysis of the air cargo transport network using a complex network theory perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    11. Jingyi Lin & Yifang Ban, 2013. "Complex Network Topology of Transportation Systems," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 658-685, November.
    12. Guo-Ling Jia & Rong-Guo Ma & Zhi-Hua Hu, 2019. "Urban Transit Network Properties Evaluation and Optimization Based on Complex Network Theory," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    13. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    14. Hu, Jiantao & Du, Yuxian & Mo, Hongming & Wei, Daijun & Deng, Yong, 2016. "A modified weighted TOPSIS to identify influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 73-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Fengjie & Ma, Mengdi & Ren, Cuiping, 2022. "Research on multilayer network structure characteristics from a higher-order model: The case of a Chinese high-speed railway system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Bai, Bingfeng, 2022. "Strategic business management for airport alliance: A complex network approach to simulation robustness analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    3. Tsekeris, Theodore & Souliotou, Anastasia-Zoi, 2014. "Graph-theoretic evaluation support tool for fixed-route transport development in metropolitan areas," Transport Policy, Elsevier, vol. 32(C), pages 88-95.
    4. Calzada-Infante, L. & Adenso-Díaz, B. & García Carbajal, S., 2020. "Analysis of the European international railway network and passenger transfers," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Cuiping Ren & Bianbian Chen & Fengjie Xie & Xuan Zhao & Jiaqian Zhang & Xueyan Zhou, 2022. "Understanding Hazardous Materials Transportation Accidents Based on Higher-Order Network Theory," IJERPH, MDPI, vol. 19(20), pages 1-13, October.
    6. Biyue Wang & Martin de Jong & Ellen van Bueren & Aksel Ersoy & Yanchun Meng, 2023. "Transit-Oriented Development in China: A Comparative Content Analysis of the Spatial Plans of High-Speed Railway Station Areas," Land, MDPI, vol. 12(9), pages 1-21, September.
    7. Du, Yuxian & Lin, Xi & Pan, Ye & Chen, Zhaoxin & Xia, Huan & Luo, Qian, 2023. "Identifying influential airports in airline network based on failure risk factors with TOPSIS," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Liao, Cong & Scheuer, Bronte, 2022. "Evaluating the performance of transit-oriented development in Beijing metro station areas: Integrating morphology and demand into the node-place model," Journal of Transport Geography, Elsevier, vol. 100(C).
    9. Kopsidas, Athanasios & Kepaptsoglou, Konstantinos, 2022. "Identification of critical stations in a Metro System: A substitute complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    10. Ting Chen & Jianxiao Ma & Zhenjun Zhu & Xiucheng Guo, 2023. "Evaluation Method for Node Importance of Urban Rail Network Considering Traffic Characteristics," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    11. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    12. Jing Cheng & Pei Yin, 2022. "Analysis of the Complex Network of the Urban Function under the Lockdown of COVID-19: Evidence from Shenzhen in China," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    13. Yangyang Meng & Xiaofei Zhao & Jianzhong Liu & Qingjie Qi, 2023. "Dynamic Influence Analysis of the Important Station Evolution on the Resilience of Complex Metro Network," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    14. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    15. Chen Zhang & Yichen Liang & Tian Tian & Peng Peng, 2024. "Sustainable Transportation: Exploring the Node Importance Evolution of Rail Transit Networks during Peak Hours," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    16. Noguchi, Hiroki & Fuse, Masaaki, 2020. "Rethinking critical node problem for railway networks from the perspective of turn-back operation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    17. Jing Liu & Huapu Lu & Mingyu Chen & Jianyu Wang & Ying Zhang, 2020. "Macro Perspective Research on Transportation Safety: An Empirical Analysis of Network Characteristics and Vulnerability," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
    18. Yi Liu & Senbin Yu & Chaoyang Zhang & Peiran Zhang & Yang Wang & Liang Gao, 2022. "Critical Percolation on Temporal High-Speed Railway Networks," Mathematics, MDPI, vol. 10(24), pages 1-8, December.
    19. Tan, Erlong & Liu, Bing & Guo, Cong & Ma, Xiaolei, 2024. "Restoration sequence optimization for vulnerable metro stations with limited budget: A case study of Beijing, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    20. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1151-:d:1624959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.