IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp73-85.html
   My bibliography  Save this article

A modified weighted TOPSIS to identify influential nodes in complex networks

Author

Listed:
  • Hu, Jiantao
  • Du, Yuxian
  • Mo, Hongming
  • Wei, Daijun
  • Deng, Yong

Abstract

Identifying influential nodes in complex networks is still an open issue. Although various centrality measures have been proposed to address this problem, such as degree, betweenness, and closeness centralities, they all have some limitations. Recently, technique for order performance by similarity to ideal solution (TOPSIS), as a tradeoff between the existing metrics, has been proposed to rank nodes effectively and efficiently. It regards the centrality measures as the multi-attribute of the complex network and connects the multi-attribute to synthesize the evaluation of node importance of each node. However, each attribute plays an equally important part in this method, which is not reasonable. In this paper, we improve the method to ranking the node’s spreading ability. A new method, named as weighted technique for order performance by similarity to ideal solution (weighted TOPSIS) is proposed. In our method, we not only consider different centrality measures as the multi-attribute to the network, but also propose a new algorithm to calculate the weight of each attribute. To evaluate the performance of our method, we use the Susceptible–Infected–Recovered (SIR) model to do the simulation on four real networks. The experiments on four real networks show that the proposed method can rank the spreading ability of nodes more accurately than the original method.

Suggested Citation

  • Hu, Jiantao & Du, Yuxian & Mo, Hongming & Wei, Daijun & Deng, Yong, 2016. "A modified weighted TOPSIS to identify influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 73-85.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:73-85
    DOI: 10.1016/j.physa.2015.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115007554
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Liu, Jian-Guo & Ren, Zhuo-Ming & Guo, Qiang, 2013. "Ranking the spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4154-4159.
    3. Du, Yuxian & Gao, Cai & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "A new method of identifying influential nodes in complex networks based on TOPSIS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 57-69.
    4. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    5. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    6. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    7. Gao, Shuai & Ma, Jun & Chen, Zhumin & Wang, Guanghui & Xing, Changming, 2014. "Ranking the spreading ability of nodes in complex networks based on local structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 130-147.
    8. Hou, Bonan & Yao, Yiping & Liao, Dongsheng, 2012. "Identifying all-around nodes for spreading dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4012-4017.
    9. Liu, Jie & Li, Yunpeng & Ruan, Zichan & Fu, Guangyuan & Chen, Xiaowu & Sadiq, Rehan & Deng, Yong, 2015. "A new method to construct co-author networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 29-39.
    10. Sang-Bing Tsai & Min-Fang Chien & Youzhi Xue & Lei Li & Xiaodong Jiang & Quan Chen & Jie Zhou & Lei Wang, 2015. "Using the Fuzzy DEMATEL to Determine Environmental Performance: A Case of Printed Circuit Board Industry in Taiwan," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Honglu & Tian, Zhihong & Huang, Anqiang & Yang, Zaili, 2018. "Analysis of vulnerabilities in maritime supply chains," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 475-484.
    2. Ahmad, Amreen & Ahmad, Tanvir & Bhatt, Abhishek, 2020. "HWSMCB: A community-based hybrid approach for identifying influential nodes in the social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Zhou, Yaoming & Kundu, Tanmoy & Goh, Mark & Sheu, Jiuh-Biing, 2023. "Beyond throughput: Incorporating air transport network topology in airport performance measurement," Journal of Air Transport Management, Elsevier, vol. 112(C).
    4. Jiang, Cheng & Liu, Zhonghua, 2019. "Detecting multiple key players under the positive effect by using a distance-based connectivity approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    5. Zhang, Tianrui & Yang, Lu-Xing & Yang, Xiaofan & Wu, Yingbo & Tang, Yuan Yan, 2017. "Dynamic malware containment under an epidemic model with alert," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 249-260.
    6. Tao, Li & Kong, Shengzhou & He, Langzhou & Zhang, Fan & Li, Xianghua & Jia, Tao & Han, Zhen, 2022. "A sequential-path tree-based centrality for identifying influential spreaders in temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Mehrdad Agha Mohammad Ali Kermani & Reza Ghesmati & Masoud Jalayer, 2018. "Opinion-Aware Influence Maximization: How To Maximize A Favorite Opinion In A Social Network?," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-27, September.
    8. Chen Zhang & Yichen Liang & Tian Tian & Peng Peng, 2024. "Sustainable Transportation: Exploring the Node Importance Evolution of Rail Transit Networks during Peak Hours," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    9. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    10. Kuo, Ting, 2017. "A modified TOPSIS with a different ranking index," European Journal of Operational Research, Elsevier, vol. 260(1), pages 152-160.
    11. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    12. Li, Deqiang & Zhao, Laijun & Wang, Chenchen & Sun, Wenjun & Xue, Jian, 2018. "Selection of China’s imported grain distribution centers in the context of the Belt and Road initiative," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 120(C), pages 16-34.
    13. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    14. Carpitella, Silvia & Certa, Antonella & Izquierdo, Joaquín & La Fata, Concetta Manuela, 2018. "A combined multi-criteria approach to support FMECA analyses: A real-world case," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 394-402.
    15. Francesco Ciardiello & Andrea Genovese, 2023. "A comparison between TOPSIS and SAW methods," Annals of Operations Research, Springer, vol. 325(2), pages 967-994, June.
    16. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Exploring node importance evolution of weighted complex networks in urban rail transit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    17. Hu, Yunchao & Lu, Guibin & Gao, Wenyu, 2022. "A study on China’s systemically important financial institutions based on multi-time scale causality networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    18. Ullah, Farman & Lee, Sungchang, 2017. "Identification of influential nodes based on temporal-aware modeling of multi-hop neighbor interactions for influence spread maximization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 968-985.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    2. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Shokrollahi, Arman, 2015. "Improving detection of influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 833-845.
    3. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    4. Gao, Shuai & Ma, Jun & Chen, Zhumin & Wang, Guanghui & Xing, Changming, 2014. "Ranking the spreading ability of nodes in complex networks based on local structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 130-147.
    5. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    6. Liu, Jie & Li, Yunpeng & Ruan, Zichan & Fu, Guangyuan & Chen, Xiaowu & Sadiq, Rehan & Deng, Yong, 2015. "A new method to construct co-author networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 29-39.
    7. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    8. Salavati, Chiman & Abdollahpouri, Alireza & Manbari, Zhaleh, 2018. "BridgeRank: A novel fast centrality measure based on local structure of the network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 635-653.
    9. Fu, Yu-Hsiang & Huang, Chung-Yuan & Sun, Chuen-Tsai, 2015. "Using global diversity and local topology features to identify influential network spreaders," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 344-355.
    10. Liu, Jun & Xiong, Qingyu & Shi, Weiren & Shi, Xin & Wang, Kai, 2016. "Evaluating the importance of nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 209-219.
    11. Bae, Joonhyun & Kim, Sangwook, 2014. "Identifying and ranking influential spreaders in complex networks by neighborhood coreness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 549-559.
    12. Ma, Qian & Ma, Jun, 2017. "Identifying and ranking influential spreaders in complex networks with consideration of spreading probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 312-330.
    13. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Zhu, Hengmin & Yin, Xicheng & Ma, Jing & Hu, Wei, 2016. "Identifying the main paths of information diffusion in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 320-328.
    15. Yeruva, Sujatha & Devi, T. & Reddy, Y. Samtha, 2016. "Selection of influential spreaders in complex networks using Pareto Shell decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 133-144.
    16. Li, Qian & Zhou, Tao & Lü, Linyuan & Chen, Duanbing, 2014. "Identifying influential spreaders by weighted LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 47-55.
    17. Ma, Tinghuai & Yue, Mingliang & Qu, Jingjing & Tian, Yuan & Al-Dhelaan, Abdullah & Al-Rodhaan, Mznah, 2018. "PSPLPA: Probability and similarity based parallel label propagation algorithm on spark," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 366-378.
    18. Du, Yuxian & Gao, Cai & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "A new method of identifying influential nodes in complex networks based on TOPSIS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 57-69.
    19. Ni, Chengzhang & Yang, Jun & Kong, Demei, 2020. "Sequential seeding strategy for social influence diffusion with improved entropy-based centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    20. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:73-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.