IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics0378437119319983.html
   My bibliography  Save this article

HWSMCB: A community-based hybrid approach for identifying influential nodes in the social network

Author

Listed:
  • Ahmad, Amreen
  • Ahmad, Tanvir
  • Bhatt, Abhishek

Abstract

Influence Maximization is concerned with identifying a set of influential nodes in the social network that aims to maximize the spread of information, disease, and influence. Such a set of nodes is responsible for optimizing the influence in the network and is NP-Hard problem. To address this issue, different centrality measures have been proposed such as betweenness centrality, closeness centrality, degree centrality, but all of them suffered from some drawbacks. Some recent research works found that the dynamics of the network are greatly affected by the group structure, which is an important topological property of the social network. This paper proposes a novel framework, named, a community-based hybrid approach for identifying influential nodes in the social network (HWSMCB), to deal with the influence maximization problem. A dynamic Weighted Sum Method (D-WSM), a multi-criteria decision making method (MCDM), is introduced to take into account the node’s topological features simultaneously. The proposed HWSMCB is based on D-WSM and exploits community structure to identify influential nodes from the underlying social network. To establish the efficacy of the HWSMCB, experiments are conducted on real-world networks under the SIR epidemic model. The results obtained from HWSMCB are compared with some competitive methods such as Hybrid community based approach using K-means(HKM), W-Topsis (WT), betweenness centrality, page rank, closeness centrality, and degree centrality based on two parameters: diffusion speed and diffusion quality.

Suggested Citation

  • Ahmad, Amreen & Ahmad, Tanvir & Bhatt, Abhishek, 2020. "HWSMCB: A community-based hybrid approach for identifying influential nodes in the social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119319983
    DOI: 10.1016/j.physa.2019.123590
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119319983
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    2. Cai Gao & Xin Lan & Xiaoge Zhang & Yong Deng, 2013. "A Bio-Inspired Methodology of Identifying Influential Nodes in Complex Networks," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    3. Goel, Rahul & Singh, Anurag & Ghanbarnejad, Fakhteh, 2019. "Modeling Competitive Marketing Strategies in Social Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 50-70.
    4. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    5. Hu, Jiantao & Du, Yuxian & Mo, Hongming & Wei, Daijun & Deng, Yong, 2016. "A modified weighted TOPSIS to identify influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 73-85.
    6. Du, Yuxian & Gao, Cai & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "A new method of identifying influential nodes in complex networks based on TOPSIS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 57-69.
    7. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    8. Yin, Likang & Deng, Yong, 2018. "Toward uncertainty of weighted networks: An entropy-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 176-186.
    9. Gupta, Naveen & Singh, Anurag & Cherifi, Hocine, 2016. "Centrality measures for networks with community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 46-59.
    10. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2018. "Group based centrality for immunization of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 35-47.
    11. Linyuan Lü & Tao Zhou & Qian-Ming Zhang & H. Eugene Stanley, 2016. "The H-index of a network node and its relation to degree and coreness," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Lei, 2022. "Network versus content: The effectiveness in identifying opinion leaders in an online social network with empirical evaluation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Tao & Jiang, Wen, 2019. "Identifying influential nodes based on fuzzy local dimension in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 332-342.
    2. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    4. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    5. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    6. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Exploring node importance evolution of weighted complex networks in urban rail transit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    7. Fei, Liguo & Deng, Yong, 2017. "A new method to identify influential nodes based on relative entropy," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 257-267.
    8. Wei, Bo & Deng, Yong, 2019. "A cluster-growing dimension of complex networks: From the view of node closeness centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 80-87.
    9. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    10. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    11. Kuo, Ting, 2017. "A modified TOPSIS with a different ranking index," European Journal of Operational Research, Elsevier, vol. 260(1), pages 152-160.
    12. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    14. Jiang, Cheng & Liu, Zhonghua, 2019. "Detecting multiple key players under the positive effect by using a distance-based connectivity approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    15. Dong, Chen & Xu, Guiqiong & Meng, Lei & Yang, Pingle, 2022. "CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    16. Du, Yuxian & Lin, Xi & Pan, Ye & Chen, Zhaoxin & Xia, Huan & Luo, Qian, 2023. "Identifying influential airports in airline network based on failure risk factors with TOPSIS," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    17. Xiao, Feng & Li, Jin & Wei, Bo, 2022. "Cascading failure analysis and critical node identification in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    18. Jiayu Qin & Gang Mei & Lei Xiao, 2020. "Building the Traffic Flow Network with Taxi GPS Trajectories and Its Application to Identify Urban Congestion Areas for Traffic Planning," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    19. Ni, Chengzhang & Yang, Jun & Kong, Demei, 2020. "Sequential seeding strategy for social influence diffusion with improved entropy-based centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    20. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119319983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.