A novel wind turbine fault diagnosis method based on intergral extension load mean decomposition multiscale entropy and least squares support vector machine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2017.09.061
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Li, Zhongliang & Outbib, Rachid & Giurgea, Stefan & Hissel, Daniel & Jemei, Samir & Giraud, Alain & Rosini, Sebastien, 2016. "Online implementation of SVM based fault diagnosis strategy for PEMFC systems," Applied Energy, Elsevier, vol. 164(C), pages 284-293.
- Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
- He, Guolin & Ding, Kang & Wu, Xiaomeng & Yang, Xiaoqing, 2019. "Dynamics modeling and vibration modulation signal analysis of wind turbine planetary gearbox with a floating sun gear," Renewable Energy, Elsevier, vol. 139(C), pages 718-729.
- Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Lei, Jinhao & Liu, Chao & Jiang, Dongxiang, 2019. "Fault diagnosis of wind turbine based on Long Short-term memory networks," Renewable Energy, Elsevier, vol. 133(C), pages 422-432.
- Wenxin Yu & Shoudao Huang & Weihong Xiao, 2018. "Fault Diagnosis Based on an Approach Combining a Spectrogram and a Convolutional Neural Network with Application to a Wind Turbine System," Energies, MDPI, vol. 11(10), pages 1-11, September.
- Lixiao Cao & Zheng Qian & Hamid Zareipour & David Wood & Ehsan Mollasalehi & Shuangshu Tian & Yan Pei, 2018. "Prediction of Remaining Useful Life of Wind Turbine Bearings under Non-Stationary Operating Conditions," Energies, MDPI, vol. 11(12), pages 1-20, November.
- Tan, Hongchuang & Xie, Suchao & Ma, Wen & Yang, Chengxing & Zheng, Shiwei, 2023. "Correlation feature distribution matching for fault diagnosis of machines," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Abu Al Hassan & Phong Ba Dao, 2025. "Bridging Data and Diagnostics: A Systematic Review and Case Study on Integrating Trend Monitoring and Change Point Detection for Wind Turbines," Energies, MDPI, vol. 18(19), pages 1-50, September.
- Dhibi, Khaled & Mansouri, Majdi & Bouzrara, Kais & Nounou, Hazem & Nounou, Mohamed, 2022. "Reduced neural network based ensemble approach for fault detection and diagnosis of wind energy converter systems," Renewable Energy, Elsevier, vol. 194(C), pages 778-787.
- Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
- Zhang, Yan & Liu, Wenyi & Wang, Xin & Gu, Heng, 2022. "A novel wind turbine fault diagnosis method based on compressed sensing and DTL-CNN," Renewable Energy, Elsevier, vol. 194(C), pages 249-258.
- Hui Li & Bangji Fan & Rong Jia & Fang Zhai & Liang Bai & Xingqi Luo, 2020. "Research on Multi-Domain Fault Diagnosis of Gearbox of Wind Turbine Based on Adaptive Variational Mode Decomposition and Extreme Learning Machine Algorithms," Energies, MDPI, vol. 13(6), pages 1-20, March.
- Li, Yanting & Jiang, Wenbo & Zhang, Guangyao & Shu, Lianjie, 2021. "Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data," Renewable Energy, Elsevier, vol. 171(C), pages 103-115.
- Wang, Zhenya & Yao, Ligang & Cai, Yongwu & Zhang, Jun, 2020. "Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis," Renewable Energy, Elsevier, vol. 155(C), pages 1312-1327.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
- Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
- Ying Tian & Qiang Zou & Jin Han, 2021. "Data-Driven Fault Diagnosis for Automotive PEMFC Systems Based on the Steady-State Identification," Energies, MDPI, vol. 14(7), pages 1-17, March.
- Andújar, J.M. & Segura, F. & Isorna, F. & Calderón, A.J., 2018. "Comprehensive diagnosis methodology for faults detection and identification, and performance improvement of Air-Cooled Polymer Electrolyte Fuel Cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 193-207.
- Liu, W.Y., 2017. "A review on wind turbine noise mechanism and de-noising techniques," Renewable Energy, Elsevier, vol. 108(C), pages 311-320.
- Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
- Ajagekar, Akshay & You, Fengqi, 2021. "Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems," Applied Energy, Elsevier, vol. 303(C).
- Hur, S. & Recalde-Camacho, L. & Leithead, W.E., 2017. "Detection and compensation of anomalous conditions in a wind turbine," Energy, Elsevier, vol. 124(C), pages 74-86.
- Alvarez, Eduardo J. & Ribaric, Adrijan P., 2018. "An improved-accuracy method for fatigue load analysis of wind turbine gearbox based on SCADA," Renewable Energy, Elsevier, vol. 115(C), pages 391-399.
- Martinez-Luengo, Maria & Kolios, Athanasios & Wang, Lin, 2016. "Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 91-105.
- Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
- Young Park, Jin & Seop Lim, In & Ho Lee, Yeong & Lee, Won-Yong & Oh, Hwanyeong & Soo Kim, Min, 2023. "Severity-based fault diagnostic method for polymer electrolyte membrane fuel cell systems," Applied Energy, Elsevier, vol. 332(C).
- Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.
- Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
- Behzad Najafi & Paolo Bonomi & Andrea Casalegno & Fabio Rinaldi & Andrea Baricci, 2020. "Rapid Fault Diagnosis of PEM Fuel Cells through Optimal Electrochemical Impedance Spectroscopy Tests," Energies, MDPI, vol. 13(14), pages 1-19, July.
- Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
- Zhang, Yan & Liu, Wenyi & Wang, Xin & Gu, Heng, 2022. "A novel wind turbine fault diagnosis method based on compressed sensing and DTL-CNN," Renewable Energy, Elsevier, vol. 194(C), pages 249-258.
- Oh, Hwanyeong & Lee, Won-Yong & Won, Jinyeon & Kim, Minjin & Choi, Yoon-Young & Han, Soo-Bin, 2020. "Residual-based fault diagnosis for thermal management systems of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 277(C).
- Han, Zhezhe & Hossain, Md. Moinul & Wang, Yuwei & Li, Jian & Xu, Chuanlong, 2020. "Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network," Applied Energy, Elsevier, vol. 259(C).
- Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:116:y:2018:i:pa:p:169-175. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/renene/v116y2018ipap169-175.html