IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics030626191931846x.html
   My bibliography  Save this article

Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network

Author

Listed:
  • Han, Zhezhe
  • Hossain, Md. Moinul
  • Wang, Yuwei
  • Li, Jian
  • Xu, Chuanlong

Abstract

Combustion instability is a well-known problem in the combustion processes and closely linked to lower combustion efficiency and higher pollutant emissions. Therefore, it is important to monitor combustion stability for optimizing efficiency and maintaining furnace safety. However, it is difficult to establish a robust monitoring model with high precision through traditional data-driven methods, where prior knowledge of labeled data is required. This study proposes a novel approach for combustion stability monitoring through stacked sparse autoencoder based deep neural network. The proposed stacked sparse autoencoder is firstly utilized to extract flame representative features from the unlabeled images, and an improved loss function is used to enhance the training efficiency. The extracted features are then used to identify the classification label and stability index through clustering and statistical analysis. Classification and regression models incorporating the stacked sparse autoencoder are established for the qualitative and quantitative characterization of combustion stability. Experiments were carried out on a gas combustor to establish and evaluate the proposed models. It has been found that the classification model provides an F1-score of 0.99, whilst the R-squared of 0.98 is achieved through the regression model. Results obtained from the experiments demonstrated that the stacked sparse autoencoder model is capable of extracting flame representative features automatically without having manual interference. The results also show that the proposed model provides a higher prediction accuracy in comparison to the traditional data-driven methods and also demonstrates as a promising tool for monitoring the combustion stability accurately.

Suggested Citation

  • Han, Zhezhe & Hossain, Md. Moinul & Wang, Yuwei & Li, Jian & Xu, Chuanlong, 2020. "Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s030626191931846x
    DOI: 10.1016/j.apenergy.2019.114159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191931846X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qingxiang & Chen, Zhichao & Wang, Jiaquan & Zeng, Lingyan & Zhang, Xin & Li, Xiaoguang & Li, Zhengqi, 2018. "Effects of secondary air distribution in primary combustion zone on combustion and NOx emissions of a large-scale down-fired boiler with air staging," Energy, Elsevier, vol. 165(PB), pages 399-410.
    2. Li, Zhongliang & Outbib, Rachid & Giurgea, Stefan & Hissel, Daniel & Jemei, Samir & Giraud, Alain & Rosini, Sebastien, 2016. "Online implementation of SVM based fault diagnosis strategy for PEMFC systems," Applied Energy, Elsevier, vol. 164(C), pages 284-293.
    3. Habib, Mohamed A. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Abdelhafez, Ahmed, 2017. "Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor," Applied Energy, Elsevier, vol. 189(C), pages 177-186.
    4. Wang, Zhenyu & Song, Chunfeng & Chen, Tao, 2017. "Deep learning based monitoring of furnace combustion state and measurement of heat release rate," Energy, Elsevier, vol. 131(C), pages 106-112.
    5. Tian Qiu & Minjian Liu & Guiping Zhou & Li Wang & Kai Gao, 2019. "An Unsupervised Classification Method for Flame Image of Pulverized Coal Combustion Based on Convolutional Auto-Encoder and Hidden Markov Model," Energies, MDPI, vol. 12(13), pages 1-17, July.
    6. Zhang, R.C. & Hao, F. & Fan, W.J., 2018. "Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines," Applied Energy, Elsevier, vol. 225(C), pages 940-954.
    7. Ti, Shuguang & Chen, Zhichao & Li, Zhengqi & Kuang, Min & Xu, Guangyin & Lai, Jinping & Wang, Zhenfeng, 2018. "Influence of primary air cone length on combustion characteristics and NOx emissions of a swirl burner from a 0.5 MW pulverized coal-fired furnace with air staging," Applied Energy, Elsevier, vol. 211(C), pages 1179-1189.
    8. Chen, Junghui & Hsu, Tong-Yang & Chen, Chih-Chien & Cheng, Yi-Cheng, 2010. "Monitoring combustion systems using HMM probabilistic reasoning in dynamic flame images," Applied Energy, Elsevier, vol. 87(7), pages 2169-2179, July.
    9. Li, Ran & Wang, Zhimin & Gu, Chenghong & Li, Furong & Wu, Hao, 2016. "A novel time-of-use tariff design based on Gaussian Mixture Model," Applied Energy, Elsevier, vol. 162(C), pages 1530-1536.
    10. Li, Qiong & Meng, Qinglin & Cai, Jiejin & Yoshino, Hiroshi & Mochida, Akashi, 2009. "Applying support vector machine to predict hourly cooling load in the building," Applied Energy, Elsevier, vol. 86(10), pages 2249-2256, October.
    11. Chen, Junghui & Chan, Lester Lik Teck & Cheng, Yi-Cheng, 2013. "Gaussian process regression based optimal design of combustion systems using flame images," Applied Energy, Elsevier, vol. 111(C), pages 153-160.
    12. Cammarata, L. & Fichera, A. & Pagano, A., 2002. "Neural prediction of combustion instability," Applied Energy, Elsevier, vol. 72(2), pages 513-528, June.
    13. Fichera, A. & Losenno, C. & Pagano, A., 2001. "Experimental analysis of thermo-acoustic combustion instability," Applied Energy, Elsevier, vol. 70(2), pages 179-191, October.
    14. An, Yanzhao & Tang, Qinglong & Vallinayagam, Raman & Shi, Hao & Sim, Jaeheon & Chang, Junseok & Magnotti, Gaetano & Johansson, Bengt, 2019. "Combustion stability study of partially premixed combustion by high-pressure multiple injections with low-octane fuel," Applied Energy, Elsevier, vol. 248(C), pages 626-639.
    15. Li, Xinyan & Huang, Yong & Zhao, Dan & Yang, Wenming & Yang, Xinglin & Wen, Huabing, 2017. "Stability study of a nonlinear thermoacoustic combustor: Effects of time delay, acoustic loss and combustion-flow interaction index," Applied Energy, Elsevier, vol. 199(C), pages 217-224.
    16. Bouzgou, Hassen & Benoudjit, Nabil, 2011. "Multiple architecture system for wind speed prediction," Applied Energy, Elsevier, vol. 88(7), pages 2463-2471, July.
    17. Tóth, Pál & Garami, Attila & Csordás, Bernadett, 2017. "Image-based deep neural network prediction of the heat output of a step-grate biomass boiler," Applied Energy, Elsevier, vol. 200(C), pages 155-169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Larsen & Paul A. Hooper, 2022. "Deep semi-supervised learning of dynamics for anomaly detection in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 457-471, February.
    2. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
    3. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Hua & Yan, Tingting & Zhang, Xiaogang, 2020. "Burning condition recognition of rotary kiln based on spatiotemporal features of flame video," Energy, Elsevier, vol. 211(C).
    2. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Ji, C.Z., 2018. "Numerical and experimental demonstration of actively passive mitigating self-sustained thermoacoustic oscillations," Applied Energy, Elsevier, vol. 222(C), pages 257-266.
    3. Zhao, Dan & Li, Shihuai & Yang, Wenming & Zhang, Zhiguo, 2015. "Numerical investigation of the effect of distributed heat sources on heat-to-sound conversion in a T-shaped thermoacoustic system," Applied Energy, Elsevier, vol. 144(C), pages 204-213.
    4. Li, Xinyan & Zhao, Dan & Yang, Xinglin & Wen, Huabing & Jin, Xiao & Li, Shen & Zhao, He & Xie, Changqing & Liu, Haili, 2016. "Transient growth of acoustical energy associated with mitigating thermoacoustic oscillations," Applied Energy, Elsevier, vol. 169(C), pages 481-490.
    5. Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.
    6. Li, Xinyan & Huang, Yong & Zhao, Dan & Yang, Wenming & Yang, Xinglin & Wen, Huabing, 2017. "Stability study of a nonlinear thermoacoustic combustor: Effects of time delay, acoustic loss and combustion-flow interaction index," Applied Energy, Elsevier, vol. 199(C), pages 217-224.
    7. Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
    8. Chen, Zhichao & Qiao, Yanyu & Guan, Shuo & Wang, Zhenwang & Zheng, Yu & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of inner and outer secondary air ratios on ignition, C and N conversion process of pulverized coal in swirl burner under sub-stoichiometric ratio," Energy, Elsevier, vol. 239(PD).
    9. Fichera, A. & Pagano, A., 2006. "Application of neural dynamic optimization to combustion-instability control," Applied Energy, Elsevier, vol. 83(3), pages 253-264, March.
    10. Zeng, Guang & Zhou, Anqi & Fu, Jinming & Ji, Yang, 2022. "Experimental and numerical investigations on NOx formation and reduction mechanisms of pulverized-coal stereo-staged combustion," Energy, Elsevier, vol. 261(PB).
    11. Fichera, A. & Pagano, A., 2009. "Monitoring combustion unstable dynamics by means of control charts," Applied Energy, Elsevier, vol. 86(9), pages 1574-1581, September.
    12. Ti, Shuguang & Kuang, Min & Wang, Haopeng & Xu, Guangyin & Niu, Cong & Liu, Yannan & Wang, Zhenfeng, 2020. "Experimental combustion characteristics and NOx emissions at 50% of the full load for a 600-MWe utility boiler: Effects of the coal feed rate for various mills," Energy, Elsevier, vol. 196(C).
    13. Qiao, Yanyu & Li, Song & Jing, Xinjing & Chen, Zhichao & Fan, Subo & Li, Zhengqi, 2022. "Combustion and NOx formation characteristics from a 330 MWe retrofitted anthracite-fired utility boiler with swirl burner under deeply-staged-combustion," Energy, Elsevier, vol. 258(C).
    14. Tian Qiu & Minjian Liu & Guiping Zhou & Li Wang & Kai Gao, 2019. "An Unsupervised Classification Method for Flame Image of Pulverized Coal Combustion Based on Convolutional Auto-Encoder and Hidden Markov Model," Energies, MDPI, vol. 12(13), pages 1-17, July.
    15. Laphirattanakul, Ponepen & Charoensuk, Jarruwat & Turakarn, Chinnapat & Kaewchompoo, Chatchalerm & Suksam, Niwat, 2020. "Development of pulverized biomass combustor with a pre-combustion chamber," Energy, Elsevier, vol. 208(C).
    16. Wu, Gang & Jin, Xiao & Li, Qiangtian & Zhao, He & Ahmed, I.R. & Fu, Jianqin, 2016. "Experimental and numerical definition of the extreme heater locations in a closed-open standing wave thermoacoustic system," Applied Energy, Elsevier, vol. 182(C), pages 320-330.
    17. Jia, Shuwei & Liu, Xiaolu & Yan, Guangle, 2019. "Effect of APCF policy on the haze pollution in China: A system dynamics approach," Energy Policy, Elsevier, vol. 125(C), pages 33-44.
    18. Li, Shen & Li, Qiangtian & Tang, Lin & Yang, Bin & Fu, Jianqin & Clarke, C.A. & Jin, Xiao & Ji, C.Z. & Zhao, He, 2016. "Theoretical and experimental demonstration of minimizing self-excited thermoacoustic oscillations by applying anti-sound technique," Applied Energy, Elsevier, vol. 181(C), pages 399-407.
    19. Zeng, Guang & Xu, Mingchen & Tu, Yaojie & Li, Zhenwei & Cai, Yongtie & Zheng, Zhimin & Tay, Kunlin & Yang, Wenming, 2020. "Influences of initial coal concentration on ignition behaviors of low-NOx bias combustion technology," Applied Energy, Elsevier, vol. 278(C).
    20. Zhao, Dan & Li, Shen & Zhao, He, 2016. "Entropy-involved energy measure study of intrinsic thermoacoustic oscillations," Applied Energy, Elsevier, vol. 177(C), pages 570-578.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s030626191931846x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.