IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i5p879-894.html
   My bibliography  Save this article

Practical aspects of a condition monitoring system for a wind turbine with emphasis on its design, system architecture, testing and installation

Author

Listed:
  • Hameed, Z.
  • Ahn, S.H.
  • Cho, Y.M.

Abstract

A condition monitoring system (CMS) plays a critical role in tapping the maximum potential of wind energy through wind turbine by minimizing the downtime. It has been proved that the CMS-based maintenance, compared to scheduled and corrective maintenance, is more suitable in many aspects with few disadvantages. The cost of CMS design and installation is substantial in comparison to other maintenance approaches but in the longer run CMS provides benefits surpassing the costs. There are such important parameters as the identification of most sensitive, less sensitive components, replacement costs accompanied with certain components that should be taken into consideration when designing the CMS. In this paper, we have made an attempt to evaluate the viability of CMS, and important parameters in its design, system architecture and installation. The sole purpose is to highlight the overwhelming role of CMS as a better and viable option for increasing the production rate and lowering the downtime in the wind energy converter.

Suggested Citation

  • Hameed, Z. & Ahn, S.H. & Cho, Y.M., 2010. "Practical aspects of a condition monitoring system for a wind turbine with emphasis on its design, system architecture, testing and installation," Renewable Energy, Elsevier, vol. 35(5), pages 879-894.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:5:p:879-894
    DOI: 10.1016/j.renene.2009.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109004704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diana Chronéer & Peter Wallström, 2016. "Exploring Waste and Value in a Lean Context," International Journal of Business and Management, Canadian Center of Science and Education, vol. 11(10), pages 282-282, September.
    2. Tian, Zhigang & Jin, Tongdan & Wu, Bairong & Ding, Fangfang, 2011. "Condition based maintenance optimization for wind power generation systems under continuous monitoring," Renewable Energy, Elsevier, vol. 36(5), pages 1502-1509.
    3. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    4. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    5. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    6. Zhou, H.F. & Zheng, J.F. & Xie, Z.L. & Lu, L.J. & Ni, Y.Q. & Ko, J.M., 2017. "Temperature effects on vision measurement system in long-term continuous monitoring of displacement," Renewable Energy, Elsevier, vol. 114(PB), pages 968-983.
    7. Barooni, M. & Ale Ali, N. & Ashuri, T., 2018. "An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines," Energy, Elsevier, vol. 154(C), pages 442-454.
    8. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    9. Faran Ahmed & Muhammad Naeem & Muhammad Iqbal, 2017. "ICT and renewable energy: a way forward to the next generation telecom base stations," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(1), pages 43-56, January.
    10. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    11. Rodrigues, R.B. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "Protection of wind energy systems against the indirect effects of lightning," Renewable Energy, Elsevier, vol. 36(11), pages 2888-2896.
    12. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    13. Yolanda Vidal & Christian Tutivén & José Rodellar & Leonardo Acho, 2015. "Fault Diagnosis and Fault-Tolerant Control of Wind Turbines via a Discrete Time Controller with a Disturbance Compensator," Energies, MDPI, vol. 8(5), pages 1-17, May.
    14. Van Horenbeek, Adriaan & Van Ostaeyen, Joris & Duflou, Joost R. & Pintelon, Liliane, 2013. "Quantifying the added value of an imperfectly performing condition monitoring system—Application to a wind turbine gearbox," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 45-57.
    15. Ha, Jong M. & Oh, Hyunseok & Park, Jungho & Youn, Byeng D., 2017. "Classification of operating conditions of wind turbines for a class-wise condition monitoring strategy," Renewable Energy, Elsevier, vol. 103(C), pages 594-605.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:5:p:879-894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.