IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p5106-d375137.html
   My bibliography  Save this article

Vibration-Based Seismic Damage States Evaluation for Regional Concrete Beam Bridges Using Random Forest Method

Author

Listed:
  • Xiaoming Lei

    (Department of Bridge Engineering, Tongji University, Shanghai 200092, China)

  • Limin Sun

    (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)

  • Ye Xia

    (Department of Bridge Engineering, Tongji University, Shanghai 200092, China)

  • Tiantao He

    (Ningbo Municipal Facilities Center, Ningbo 315010, China)

Abstract

Transportation networks play an important role in urban areas, and bridges are the most vulnerable structures to earthquakes. The seismic damage evaluation of bridges provides an effective tool to assess the potential damage, and guides the post-earthquake recovery operations. With the help of structural health monitoring (SHM) techniques, the structural condition could be accurately evaluated through continuous monitoring of structural responses, and evaluating vibration-based features, which could reflect the deterioration of materials and boundary conditions, and are extensively used to reflect the structural conditions. This study proposes a vibration-based seismic damage state evaluation method for regional bridges. The proposed method contains the measured structural dynamic parameters and bridge configuration parameters. In addition, several intensity measures are also included in the model, to represent the different characteristics and the regional diversity of ground motions. The prediction models are trained with a random forest algorithm, and their confusion matrices and receiver operation curves reveal a good prediction performance, with over 90% accuracy. The significant parameter identification of bridge systems and components reveals the critical parameters for seismic design, disaster prevention and structure retrofit.

Suggested Citation

  • Xiaoming Lei & Limin Sun & Ye Xia & Tiantao He, 2020. "Vibration-Based Seismic Damage States Evaluation for Regional Concrete Beam Bridges Using Random Forest Method," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5106-:d:375137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/5106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/5106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yeudy F. Vargas-Alzate & Nieves Lantada & Ramón González-Drigo & Luis G. Pujades, 2020. "Seismic Risk Assessment Using Stochastic Nonlinear Models," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    2. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    3. Chuanjie Cui & Rujin Ma & Xiaohong Hu & Wuchao He, 2019. "Vibration Analysis for Pendent Pedestrian Path of a Long-Span Extradosed Bridge," Sustainability, MDPI, vol. 11(17), pages 1-15, August.
    4. Vincenzo Barrile & Antonino Fotia & Giovanni Leonardi & Raffaele Pucinotti, 2020. "Geomatics and Soft Computing Techniques for Infrastructural Monitoring," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    5. Tiago Miguel Ferreira & Hugo Rodrigues & Romeu Vicente, 2020. "Seismic Vulnerability Assessment of Existing Reinforced Concrete Buildings in Urban Centers," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    6. Yongqiang Yang & Shuang Li, 2019. "Development of a Refined Analysis Method for Earthquake-Induced Pounding between Adjacent RC Frame Structures," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    7. Wei Wang & Fengying Wu & Ziyi Wang, 2020. "Revising Seismic Vulnerability of Bridges Based on Bayesian Updating Method to Evaluate Traffic Capacity of Bridges," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin He & Guojin Tan & Wenchao Chu & Sufeng Zhang & Xueliang Wei, 2022. "Reliability Assessment Method for Simply Supported Bridge Based on Structural Health Monitoring of Frequency with Temperature and Humidity Effect Eliminated," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    2. Shaoyi Zhang & Yongliang Wang & Kaiping Yu, 2022. "Steady-State Data Baseline Model for Nonstationary Monitoring Data of Urban Girder Bridges," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    3. Xin Gao & Gengxin Duan & Chunguang Lan, 2021. "Bayesian Updates for an Extreme Value Distribution Model of Bridge Traffic Load Effect Based on SHM Data," Sustainability, MDPI, vol. 13(15), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eliana Fischer & Alessio Emanuele Biondo & Annalisa Greco & Francesco Martinico & Alessandro Pluchino & Andrea Rapisarda, 2022. "Objective and Perceived Risk in Seismic Vulnerability Assessment at an Urban Scale," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    2. Wang, Yangwei & Lin, Jiahuan & Zhang, Jun, 2022. "Investigation of a new analytical wake prediction method for offshore floating wind turbines considering an accurate incoming wind flow," Renewable Energy, Elsevier, vol. 185(C), pages 827-849.
    3. Antonio Artino & Riccardo Caponetto & Gianpiero Evola & Giuseppe Margani & Edoardo Michele Marino & Emanuele Murgano, 2020. "Decision Support System for the Sustainable Seismic and Energy Renovation of Buildings: Methodological Layout," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    4. Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).
    5. Eliana Fischer & Giovanni Barreca & Annalisa Greco & Francesco Martinico & Alessandro Pluchino & Andrea Rapisarda, 2023. "Seismic risk assessment of a large metropolitan area by means of simulated earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 117-153, August.
    6. Ye Zheng & Yazhou Xie & Xuejiao Long, 2021. "A comprehensive review of Bayesian statistics in natural hazards engineering," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 63-91, August.
    7. Shuo Yang & Jianrong Yang & Rui Li, 2023. "Evaluation of Pedestrian Comfort for a Footbridge with Hinged Piers," Sustainability, MDPI, vol. 15(13), pages 1-14, June.
    8. Emmanouil Golias & Adamantis G. Zapris & Violetta K. Kytinou & George I. Kalogeropoulos & Constantin E. Chalioris & Chris G. Karayannis, 2021. "Effectiveness of the Novel Rehabilitation Method of Seismically Damaged RC Joints Using C-FRP Ropes and Comparison with Widely Applied Method Using C-FRP Sheets—Experimental Investigation," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    9. Zheng Zhou & Kaizhi Dong & Ziwei Fang & Yang Liu, 2022. "A Two-Stage Approach for Damage Diagnosis of Structures Based on a Fully Distributed Strain Mode under Multigain Feedback Control," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    10. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2022. "Life-extension classification of offshore wind assets using unsupervised machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Lianhuo Wu & Zelin Zhou & Jinxiang Zhang & Mingjin Zhang, 2023. "A Numerical Method for Conformal Mapping of Closed Box Girder Bridges and Its Application," Sustainability, MDPI, vol. 15(7), pages 1-13, April.
    13. Lianhuo Wu & Mingjin Zhang & Fanying Jiang & Zelin Zhou & Yongle Li, 2023. "An Analytical Solution for Unsteady Aerodynamic Forces on Streamlined Box Girders with Coupled Vibration," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    14. Sungmok Hwang & Cheol Yoo, 2021. "Health Monitoring and Diagnosis System for a Small H-Type Darrieus Vertical-Axis Wind Turbine," Energies, MDPI, vol. 14(21), pages 1-18, November.
    15. Jinsong Gan & Peizhen Li & Qiang Liu, 2019. "Study on Dynamic Structure-Soil-Structure Interaction of Three Adjacent Tall Buildings Subjected to Seismic Loading," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    16. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Nurullah Bektaş & Orsolya Kegyes-Brassai, 2022. "Conventional RVS Methods for Seismic Risk Assessment for Estimating the Current Situation of Existing Buildings: A State-of-the-Art Review," Sustainability, MDPI, vol. 14(5), pages 1-40, February.
    18. Gürdal Ertek & Lakshmi Kailas, 2021. "Analyzing a Decade of Wind Turbine Accident News with Topic Modeling," Sustainability, MDPI, vol. 13(22), pages 1-34, November.
    19. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Shen Xie & Xinggang Wang & Mi Zhou & Deyong Wang & Weiping Peng, 2022. "Penetration Behavior of the Footing of Jack-Up Vessel of OWTs in Thin Stiff over NC Clay," Sustainability, MDPI, vol. 14(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5106-:d:375137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.