IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i24p10273-d459038.html
   My bibliography  Save this article

Decision Support System for the Sustainable Seismic and Energy Renovation of Buildings: Methodological Layout

Author

Listed:
  • Antonio Artino

    (Department of Civil Engineering and Architecture (DICAr), University of Catania, Via S. Sofia 64, 95123 Catania, Italy)

  • Riccardo Caponetto

    (Department of Electrical Electronic and Computer Engineering (DIEEI), University of Catania, Viale A. Doria 6, 95125 Catania, Italy)

  • Gianpiero Evola

    (Department of Electrical Electronic and Computer Engineering (DIEEI), University of Catania, Viale A. Doria 6, 95125 Catania, Italy)

  • Giuseppe Margani

    (Department of Civil Engineering and Architecture (DICAr), University of Catania, Via S. Sofia 64, 95123 Catania, Italy)

  • Edoardo Michele Marino

    (Department of Civil Engineering and Architecture (DICAr), University of Catania, Via S. Sofia 64, 95123 Catania, Italy)

  • Emanuele Murgano

    (Department of Electrical Electronic and Computer Engineering (DIEEI), University of Catania, Viale A. Doria 6, 95125 Catania, Italy)

Abstract

In Italy, as in many other European countries, a large part of the real estate was built before the issue of restrictive regulations regarding seismic resistance and energy efficiency. Consequently, most existing buildings show inadequate structural and energy performance. However, although a combined renovation is highly recommended, and despite relevant tax incentives which are currently available, the building retrofit market is still struggling to take off. In fact, the lack of information and/or awareness of the involved parties and the consequent difficulty for condominiums to approve the retrofit works are often insuperable obstacles. A Decision Support System (DSS) may help in evaluating and comparing different combined renovation scenarios, thus promoting the regeneration of the building stock. This study presents a new methodology for the selection of the optimal building renovation scenario through a DSS, which is conceived as a tool to allow a quick, simple and effective identification of the best retrofit strategy, based on a priority scale (e.g., costs and duration of intervention, disruption to the occupants, environmental sustainability, energy savings, thermal comfort, structural safety). For this purpose, the DSS calculates suitable performance indices and relative costs. Finally, the system proposes a ranking of the best combined retrofit scenarios. This research study is still ongoing and next steps will deal with the calibration of the proposed methodology.

Suggested Citation

  • Antonio Artino & Riccardo Caponetto & Gianpiero Evola & Giuseppe Margani & Edoardo Michele Marino & Emanuele Murgano, 2020. "Decision Support System for the Sustainable Seismic and Energy Renovation of Buildings: Methodological Layout," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10273-:d:459038
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/24/10273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/24/10273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastiano D’Urso & Bruno Cicero, 2019. "From the Efficiency of Nature to Parametric Design. A Holistic Approach for Sustainable Building Renovation in Seismic Regions," Sustainability, MDPI, vol. 11(5), pages 1-20, February.
    2. Annarita Ferrante & Giovanni Mochi & Giorgia Predari & Lorenzo Badini & Anastasia Fotopoulou & Riccardo Gulli & Giovanni Semprini, 2018. "A European Project for Safer and Energy Efficient Buildings: Pro-GET-onE (Proactive Synergy of inteGrated Efficient Technologies on Buildings’ Envelopes)," Sustainability, MDPI, vol. 10(3), pages 1-26, March.
    3. Baldoni, Edoardo & Coderoni, Silvia & D'Orazio, Marco & Di Giuseppe, Elisa & Esposti, Roberto, 2019. "The role of economic and policy variables in energy-efficient retrofitting assessment. A stochastic Life Cycle Costing methodology," Energy Policy, Elsevier, vol. 129(C), pages 1207-1219.
    4. Giuseppe Margani & Gianpiero Evola & Carola Tardo & Edoardo Michele Marino, 2020. "Energy, Seismic, and Architectural Renovation of RC Framed Buildings with Prefabricated Timber Panels," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    5. Tiago Miguel Ferreira & Hugo Rodrigues & Romeu Vicente, 2020. "Seismic Vulnerability Assessment of Existing Reinforced Concrete Buildings in Urban Centers," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    6. Antonio Artino & Gianpiero Evola & Giuseppe Margani & Edoardo Michele Marino, 2019. "Seismic and Energy Retrofit of Apartment Buildings through Autoclaved Aerated Concrete (AAC) Blocks Infill Walls," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    7. Aliakbar Kamari & Stefan Jensen & Maria Leonhard Christensen & Steffen Petersen & Poul Henning Kirkegaard, 2018. "A hybrid Decision Support System for Generation of Holistic Renovation Scenarios—Cases of Energy Consumption, Investment Cost, and Thermal Indoor Comfort," Sustainability, MDPI, vol. 10(4), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Pozza & Anna Degli Esposti & Alessandra Bonoli & Diego Talledo & Luca Barbaresi & Giovanni Semprini & Marco Savoia, 2021. "Multidisciplinary Performance Assessment of an Eco-Sustainable RC-Framed Skin for the Integrated Upgrading of Existing Buildings," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    2. Giuseppe Margani & Gianpiero Evola & Carola Tardo & Edoardo Michele Marino, 2020. "Energy, Seismic, and Architectural Renovation of RC Framed Buildings with Prefabricated Timber Panels," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    3. Giovanna Acampa & Lorenzo Diana & Giorgia Marino & Rossella Marmo, 2021. "Assessing the Transformability of Public Housing through BIM," Sustainability, MDPI, vol. 13(10), pages 1-24, May.
    4. Antonio Artino & Gianpiero Evola & Giuseppe Margani & Edoardo Michele Marino, 2019. "Seismic and Energy Retrofit of Apartment Buildings through Autoclaved Aerated Concrete (AAC) Blocks Infill Walls," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    5. Francesco Smiroldo & Isabella Paviani & Ivan Giongo & Stefano Zanon & Rossano Albatici & Maurizio Piazza, 2021. "An Integrated Approach to Improve Seismic and Energetic Behaviour of RC Framed Buildings Using Timber Panels," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    6. Paulo Afonso & Vishad Vyas & Ana Antunes & Sérgio Silva & Boris P. J. Bret, 2021. "A Stochastic Approach for Product Costing in Manufacturing Processes," Mathematics, MDPI, vol. 9(18), pages 1-23, September.
    7. Seungjun Roh & Sungho Tae & Rakhyun Kim, 2018. "Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    8. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.
    9. Riccardo Liberotti & Vittorio Gusella, 2023. "Parametric Modeling and Heritage: A Design Process Sustainable for Restoration," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    10. Aliakbar Kamari & Ashwin Paari & Henrik Øien Torvund, 2020. "BIM-Enabled Virtual Reality (VR) for Sustainability Life Cycle and Cost Assessment," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    11. Askar A. Akaev & Olga I. Davydova, 2021. "Mathematical Description of Energy Transition Scenarios Based on the Latest Technologies and Trends," Energies, MDPI, vol. 14(24), pages 1-25, December.
    12. Nikolaos Barmparesos & Dimitra Papadaki & Michalis Karalis & Kyriaki Fameliari & Margarita Niki Assimakopoulos, 2019. "In Situ Measurements of Energy Consumption and Indoor Environmental Quality of a Pre-Retrofitted Student Dormitory in Athens," Energies, MDPI, vol. 12(11), pages 1-19, June.
    13. Amedeo Caprino & Filippo Lorenzoni & Laura Carnieletto & Leonardo Feletto & Michele De Carli & Francesca da Porto, 2021. "Integrated Seismic and Energy Retrofit Interventions on a URM Masonry Building: The Case Study of the Former Courthouse in Fabriano," Sustainability, MDPI, vol. 13(17), pages 1-30, August.
    14. Xiaolin Yang & Zhuoxi Chen & Yukai Zou & Fengdeng Wan, 2023. "Improving the Energy Performance and Economic Benefits of Aged Residential Buildings by Retrofitting in Hot–Humid Regions of China," Energies, MDPI, vol. 16(13), pages 1-21, June.
    15. Maria Rosa Valluzzi & Elisa Saler & Alberto Vignato & Matteo Salvalaggio & Giorgio Croatto & Giorgia Dorigatti & Umberto Turrini, 2021. "Nested Buildings: An Innovative Strategy for the Integrated Seismic and Energy Retrofit of Existing Masonry Buildings with CLT Panels," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    16. Hing-Ho Tsang, 2019. "Innovative Upscaling of Architectural Elements for Strengthening Building Structures," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
    17. Roberta Pernetti & Riccardo Pinotti & Roberto Lollini, 2021. "Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    18. Edoardo Baldoni & Silvia Coderoni & Elisa Di Giuseppe & Marco D’Orazio & Roberto Esposti & Gianluca Maracchini, 2021. "A Software Tool for a Stochastic Life Cycle Assessment and Costing of Buildings’ Energy Efficiency Measures," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    19. Oleksii Lyulyov & Tetyana Pimonenko & Aleksy Kwilinski & Henryk Dzwigol & Mariola Dzwigol-Barosz & Vladyslav Pavlyk & Piotr Barosz, 2021. "The Impact of the Government Policy on the Energy Efficient Gap: The Evidence from Ukraine," Energies, MDPI, vol. 14(2), pages 1-13, January.
    20. Rayane de Lima Moura Paiva & Lucas Rosse Caldas & Adriana Paiva de Souza Martins & Patricia Brandão de Sousa & Giulia Fea de Oliveira & Romildo Dias Toledo Filho, 2021. "Thermal-Energy Analysis and Life Cycle GHG Emissions Assessments of Innovative Earth-Based Bamboo Plastering Mortars," Sustainability, MDPI, vol. 13(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10273-:d:459038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.