IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v212y2025ics1364032125000425.html
   My bibliography  Save this article

A novel prescriptive approach for buildings’ insulation design considering embodied carbon

Author

Listed:
  • di Filippo, Rocco
  • Maracchini, Gianluca
  • Albatici, Rossano
  • Di Maggio, Rosa
  • Bursi, Oreste S.

Abstract

The reduction of energy consumption and environmental impact of buildings is critically important. Thermal insulation is highly effective in reducing energy needs. Therefore, national policies have regulated and encouraged insulation retrofits. Their environmental convenience depends on the carbon footprint of the materials used and the carbon density of the energy consumed. However, this is not usually reflected in prescriptions, and no studies have tried to formulate practical solutions for this integration. This work proposes a prescriptive approach based on Type-III declarations of materials and the carbon footprint of thermal energy to improve the environmental convenience and feasibility of retrofits. The life cycle environmental balance of thermal insulation retrofits is first investigated with a simplified analytical model. Then, the analytical model is applied to a parametric case study. The effect of natural hazards on maintenance-related emissions is also considered, an aspect quite unexplored in the literature. The results demonstrated that the impact of the embodied carbon is significant, especially considering future realistic low-carbon energy scenarios and the impact of a natural hazard on the needed maintenance. The proposed approach, conceived to be applicable in current practices, allows for a reduction of the minimum thermal resistance of the opaque envelope by up to 33% in the case of low embodied carbon materials and low carbon density heating technologies. The novel approach can still deliver energy savings of more than 60% and reduce the life cycle emissions and materials required, opening new perspectives for more sustainable and holistic regulations in the building sector.

Suggested Citation

  • di Filippo, Rocco & Maracchini, Gianluca & Albatici, Rossano & Di Maggio, Rosa & Bursi, Oreste S., 2025. "A novel prescriptive approach for buildings’ insulation design considering embodied carbon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000425
    DOI: 10.1016/j.rser.2025.115369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125000425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Georgios I. Tsoumalis & Zafeirios N. Bampos & Georgios V. Chatzis & Pandelis N. Biskas, 2022. "Overview of Natural Gas Boiler Optimization Technologies and Potential Applications on Gas Load Balancing Services," Energies, MDPI, vol. 15(22), pages 1-24, November.
    2. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Kayaçetin, N.C. & Tanyer, A.M., 2020. "Embodied carbon assessment of residential housing at urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Alpino, Matteo & Citino, Luca & Zeni, Federica, 2023. "Costs and benefits of the green transitionenvisaged in the Italian NRRP - An evaluation using the social cost of carbon," Energy Policy, Elsevier, vol. 182(C).
    5. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Edoardo Baldoni & Silvia Coderoni & Elisa Di Giuseppe & Marco D’Orazio & Roberto Esposti & Gianluca Maracchini, 2021. "A Software Tool for a Stochastic Life Cycle Assessment and Costing of Buildings’ Energy Efficiency Measures," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    7. Li, X. & Densley Tingley, D., 2023. "A whole life, national approach to optimize the thickness of wall insulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    8. Scarlat, Nicolae & Prussi, Matteo & Padella, Monica, 2022. "Quantification of the carbon intensity of electricity produced and used in Europe," Applied Energy, Elsevier, vol. 305(C).
    9. Congedo, Paolo Maria & Baglivo, Cristina & D'Agostino, Delia & Albanese, Paola Maria, 2024. "Overview of EU building envelope energy requirement for climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    10. Schiavoni, S. & D׳Alessandro, F. & Bianchi, F. & Asdrubali, F., 2016. "Insulation materials for the building sector: A review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 988-1011.
    11. Dickson, T. & Pavía, S., 2021. "Energy performance, environmental impact and cost of a range of insulation materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Baldoni, Edoardo & Coderoni, Silvia & D'Orazio, Marco & Di Giuseppe, Elisa & Esposti, Roberto, 2019. "The role of economic and policy variables in energy-efficient retrofitting assessment. A stochastic Life Cycle Costing methodology," Energy Policy, Elsevier, vol. 129(C), pages 1207-1219.
    13. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    14. Keii Gi & Fuminori Sano & Ayami Hayashi & Toshimasa Tomoda & Keigo Akimoto, 2018. "A global analysis of residential heating and cooling service demand and cost-effective energy consumption under different climate change scenarios up to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 51-79, January.
    15. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    16. Kaandorp, Chelsea & Miedema, Tes & Verhagen, Jeroen & van de Giesen, Nick & Abraham, Edo, 2022. "Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation," Applied Energy, Elsevier, vol. 325(C).
    17. Laurent Lebreton & Anthony Andrady, 2019. "Future scenarios of global plastic waste generation and disposal," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    18. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    19. Flavio Scrucca & Domenico Palladino, 2023. "Integration of Energy Simulations and Life Cycle Assessment in Building Refurbishment: An Affordability Comparison of Thermal Insulation Materials through a New Sustainability Index," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    20. Carroll, P. & Chesser, M. & Lyons, P., 2020. "Air Source Heat Pumps field studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    21. Elisa Di Giuseppe & Marco D’Orazio & Guangli Du & Claudio Favi & Sébastien Lasvaux & Gianluca Maracchini & Pierryves Padey, 2020. "A Stochastic Approach to LCA of Internal Insulation Solutions for Historic Buildings," Sustainability, MDPI, vol. 12(4), pages 1-35, February.
    22. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    23. Xiaojun Liu & Xin Chen & Mehdi Shahrestani, 2020. "Optimization of Insulation Thickness of External Walls of Residential Buildings in Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    24. Al-Sanea, Sami A. & Zedan, M.F., 2011. "Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass," Applied Energy, Elsevier, vol. 88(9), pages 3113-3124.
    25. Gianluca Maracchini & Rocco Di Filippo & Rossano Albatici & Oreste S. Bursi & Rosa Di Maggio, 2023. "Sustainable Retrofit of Existing Buildings: Impact Assessment of Residual Fluorocarbons through Uncertainty and Sensitivity Analyses," Energies, MDPI, vol. 16(7), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Rohács, Dániel, 2023. "Analysis and optimization of potential energy sources for residential building application," Energy, Elsevier, vol. 275(C).
    4. Zhang, Guangpeng & Wu, Huijun & Liu, Jia & Liu, Yanchen & Ding, Yujie & Huang, Huakun, 2024. "A review on switchable building envelopes for low-energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    5. Shin, Bigyeong & Chang, Seong Jin & Wi, Seunghwan & Kim, Sumin, 2023. "Estimation of energy demand and greenhouse gas emission reduction effect of cross-laminated timber (CLT) hybrid wall using life cycle assessment for urban residential planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    6. Li, X. & Densley Tingley, D., 2023. "A whole life, national approach to optimize the thickness of wall insulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    7. Garkoti, Pankaj & Ni, Ji-Qin & Thengane, Sonal K., 2024. "Energy management for maintaining anaerobic digestion temperature in biogas plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    8. Jiang, Wei & Jin, Yang & Liu, Gongliang & Li, Qing & Li, Dong, 2023. "Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    9. Valentina Marincioni & Virginia Gori & Ernst Jan de Place Hansen & Daniel Herrera-Avellanosa & Sara Mauri & Emanuela Giancola & Aitziber Egusquiza & Alessia Buda & Eleonora Leonardi & Alexander Rieser, 2021. "How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    10. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.
    12. Taesub Lim & Jaewang Seok & Daeung Danny Kim, 2017. "A Comparative Study of Energy Performance of Fumed Silica Vacuum Insulation Panels in an Apartment Building," Energies, MDPI, vol. 10(12), pages 1-12, December.
    13. Xu, Fusuo & Zhang, Jianshun & Gao, Zhi, 2024. "A case study of the effect of building surface cool and super cool materials on residential neighbourhood energy consumption in Nanjing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    14. Yun-Yi Zhang & Kai Kang & Jia-Rui Lin & Jian-Ping Zhang & Yi Zhang, 2020. "Building information modeling–based cyber-physical platform for building performance monitoring," International Journal of Distributed Sensor Networks, , vol. 16(2), pages 15501477209, February.
    15. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Yang, Yang & Chen, Sarula & Huang, Yuxin & Li, Xianyue & Ge, Yue, 2025. "Employing modular phase change filler structures to enhance comprehensive performance of pipe-embedded energy walls under intermittent injection mode," Energy, Elsevier, vol. 322(C).
    17. Pessoa, S. & Guimarães, A.S. & Lucas, S.S. & Simões, N., 2021. "3D printing in the construction industry - A systematic review of the thermal performance in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Xiao Han & Chu Wei, 2021. "Household energy consumption: state of the art, research gaps, and future prospects," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12479-12504, August.
    19. Edoardo Baldoni & Silvia Coderoni & Elisa Di Giuseppe & Marco D’Orazio & Roberto Esposti & Gianluca Maracchini, 2021. "A Software Tool for a Stochastic Life Cycle Assessment and Costing of Buildings’ Energy Efficiency Measures," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    20. Božiček, D. & Peterková, J. & Zach, J. & Košir, M., 2024. "Vacuum insulation panels: An overview of research literature with an emphasis on environmental and economic studies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.