Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.119759
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hietaharju, Petri & Pulkkinen, Jari & Ruusunen, Mika & Louis, Jean-Nicolas, 2021. "A stochastic dynamic building stock model for determining long-term district heating demand under future climate change," Applied Energy, Elsevier, vol. 295(C).
- Eggimann, Sven & Usher, Will & Eyre, Nick & Hall, Jim W., 2020. "How weather affects energy demand variability in the transition towards sustainable heating," Energy, Elsevier, vol. 195(C).
- Sonja Renssen, 2020. "The hydrogen solution?," Nature Climate Change, Nature, vol. 10(9), pages 799-801, September.
- Jennings, Mark & Fisk, David & Shah, Nilay, 2014. "Modelling and optimization of retrofitting residential energy systems at the urban scale," Energy, Elsevier, vol. 64(C), pages 220-233.
- Neirotti, Francesco & Noussan, Michel & Simonetti, Marco, 2020. "Towards the electrification of buildings heating - Real heat pumps electricity mixes based on high resolution operational profiles," Energy, Elsevier, vol. 195(C).
- Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
- Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
- Vesterlund, Mattias & Toffolo, Andrea & Dahl, Jan, 2017. "Optimization of multi-source complex district heating network, a case study," Energy, Elsevier, vol. 126(C), pages 53-63.
- Majcen, D. & Itard, L.C.M. & Visscher, H., 2013. "Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: Discrepancies and policy implications," Energy Policy, Elsevier, vol. 54(C), pages 125-136.
- Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
- Bartolozzi, Irene & Rizzi, Francesco & Frey, Marco, 2017. "Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 408-420.
- Robert Gross & Richard Hanna, 2019. "Path dependency in provision of domestic heating," Nature Energy, Nature, vol. 4(5), pages 358-364, May.
- Birgit A. Henrich & Thomas Hoppe & Devin Diran & Zofia Lukszo, 2021. "The Use of Energy Models in Local Heating Transition Decision Making: Insights from Ten Municipalities in The Netherlands," Energies, MDPI, vol. 14(2), pages 1-23, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vítor de Castro Paes & Clinton Hudson Moreira Pessoa & Rodrigo Pereira Pagliusi & Carlos Eduardo Barbosa & Matheus Argôlo & Yuri Oliveira de Lima & Herbert Salazar & Alan Lyra & Jano Moreira de Souza, 2023. "Analyzing the Challenges for Future Smart and Sustainable Cities," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
- Maéva Dang & Andy van den Dobbelsteen & Paul Voskuilen, 2024. "A Parametric Modelling Approach for Energy Retrofitting Heritage Buildings: The Case of Amsterdam City Centre," Energies, MDPI, vol. 17(5), pages 1-20, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lerbinger, Alicia & Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof, 2023. "Optimal decarbonization strategies for existing districts considering energy systems and retrofits," Applied Energy, Elsevier, vol. 352(C).
- Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
- Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
- Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
- Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
- Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
- Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
- Lambert, Jerry & Spliethoff, Hartmut, 2024. "A two-phase nonlinear optimization method for routing and sizing district heating systems," Energy, Elsevier, vol. 302(C).
- Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
- Ding, Tao & Sun, Yuge & Huang, Can & Mu, Chenlu & Fan, Yuqi & Lin, Jiang & Qin, Yining, 2022. "Pathways of clean energy heating electrification programs for reducing carbon emissions in Northwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
- Lumbreras, Mikel & Garay-Martinez, Roberto & Arregi, Beñat & Martin-Escudero, Koldobika & Diarce, Gonzalo & Raud, Margus & Hagu, Indrek, 2022. "Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters," Energy, Elsevier, vol. 239(PD).
- Stennikov, Valery A. & Barakhtenko, Evgeny A. & Sokolov, Dmitry V., 2019. "A methodological approach to the determination of optimal parameters of district heating systems with several heat sources," Energy, Elsevier, vol. 185(C), pages 350-360.
- Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
- Nägeli, Claudio & Jakob, Martin & Catenazzi, Giacomo & Ostermeyer, York, 2020. "Policies to decarbonize the Swiss residential building stock: An agent-based building stock modeling assessment," Energy Policy, Elsevier, vol. 146(C).
- Kljajić, Miroslav V. & Anđelković, Aleksandar S. & Hasik, Vaclav & Munćan, Vladimir M. & Bilec, Melissa, 2020. "Shallow geothermal energy integration in district heating system: An example from Serbia," Renewable Energy, Elsevier, vol. 147(P2), pages 2791-2800.
- Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
- Ming Hu & Siavash Ghorbany, 2024. "Building Stock Models for Embodied Carbon Emissions—A Review of a Nascent Field," Sustainability, MDPI, vol. 16(5), pages 1-18, March.
- Yang, Xining & Hu, Mingming & Tukker, Arnold & Zhang, Chunbo & Huo, Tengfei & Steubing, Bernhard, 2022. "A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands," Applied Energy, Elsevier, vol. 306(PA).
- Copiello, Sergio & Grillenzoni, Carlo, 2017. "Is the cold the only reason why we heat our homes? Empirical evidence from spatial series data," Applied Energy, Elsevier, vol. 193(C), pages 491-506.
More about this item
Keywords
Urban heat systems; Committed carbon emissions; Retro-fitting of the building stock; Electrification of heating; Carbon lock-in; Mixed-integer non-linear programming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010315. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.