IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p2089-d1350125.html
   My bibliography  Save this article

Building Stock Models for Embodied Carbon Emissions—A Review of a Nascent Field

Author

Listed:
  • Ming Hu

    (School of Architecture, University of Notre Dame, Notre Dame, IN 46556, USA)

  • Siavash Ghorbany

    (Department of Civil and Environmental Engineering and Earth Sciences, College of Engineering, University of Notre Dame, Notre Dame, IN 46556, USA)

Abstract

Building stock modeling emerges as a critical tool in the strategic reduction of embodied carbon emissions, which is pivotal in reshaping the evolving construction sector. This review provides an overall view of modern methodologies in building stock modeling, homing in on the nuances of embodied carbon analysis in construction. Examining 23 seminal papers, our study delineates two primary modeling paradigms—top-down and bottom-up—each further compartmentalized into five innovative methods. This study points out the challenges of data scarcity and computational demands, advocating for methodological advancements that promise to refine the precision of building stock models. A groundbreaking trend in recent research is the incorporation of machine learning algorithms, which have demonstrated remarkable capacity, improving stock classification accuracy by 25% and urban material quantification by 40%. Furthermore, the application of remote sensing has revolutionized data acquisition, enhancing data richness by a factor of five. This review offers a critical examination of current practices and charts a course toward an environmentally prudent future. It underscores the transformative impact of building stock modeling in driving ecological stewardship in the construction industry, positioning it as a cornerstone in the quest for sustainability and its significant contribution toward the grand vision of an eco-efficient built environment.

Suggested Citation

  • Ming Hu & Siavash Ghorbany, 2024. "Building Stock Models for Embodied Carbon Emissions—A Review of a Nascent Field," Sustainability, MDPI, vol. 16(5), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2089-:d:1350125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/2089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/2089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Wei & Moncaster, Alice & O'Neill, Eoghan & Reiner, David M. & Wang, Xinke & Guthrie, Peter, 2022. "Modelling future trends of annual embodied energy of urban residential building stock in China," Energy Policy, Elsevier, vol. 165(C).
    2. Strachan, Neil & Kannan, Ramachandran, 2008. "Hybrid modelling of long-term carbon reduction scenarios for the UK," Energy Economics, Elsevier, vol. 30(6), pages 2947-2963, November.
    3. Yamaguchi, Yohei & Kim, Bumjoon & Kitamura, Takuya & Akizawa, Kotone & Chen, Hemiao & Shimoda, Yoshiyuki, 2022. "Building stock energy modeling considering building system composition and long-term change for climate change mitigation of commercial building stocks," Applied Energy, Elsevier, vol. 306(PA).
    4. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    5. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    6. Hietaharju, Petri & Pulkkinen, Jari & Ruusunen, Mika & Louis, Jean-Nicolas, 2021. "A stochastic dynamic building stock model for determining long-term district heating demand under future climate change," Applied Energy, Elsevier, vol. 295(C).
    7. Yang, Jingjing & Deng, Zhang & Guo, Siyue & Chen, Yixing, 2023. "Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings," Applied Energy, Elsevier, vol. 331(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yury Ilyushin & Victoria Nosova & Andrei Krauze, 2025. "Application of Systems Analysis Methods to Construct a Virtual Model of the Field," Energies, MDPI, vol. 18(4), pages 1-35, February.
    2. Ahmadi, Mohsen & Piadeh, Farzad & Hosseini, M. Reza & Zuo, Jian & Kocaturk, Tuba, 2024. "Unraveling building sector carbon mechanisms: Critique and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    2. Omar Shafqat & Elena Malakhatka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    3. Sebastian Rausch & Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, , vol. 35(1_suppl), pages 199-228, June.
    4. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    5. Kaandorp, Chelsea & Miedema, Tes & Verhagen, Jeroen & van de Giesen, Nick & Abraham, Edo, 2022. "Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation," Applied Energy, Elsevier, vol. 325(C).
    6. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    7. Anandarajah, Gabrial & Strachan, Neil, 2010. "Interactions and implications of renewable and climate change policy on UK energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6724-6735, November.
    8. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    9. Fortes, Patrícia & Pereira, Rui & Pereira, Alfredo & Seixas, Júlia, 2014. "Integrated technological-economic modeling platform for energy and climate policy analysis," Energy, Elsevier, vol. 73(C), pages 716-730.
    10. Lanz, Bruno & Rausch, Sebastian, 2011. "General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis," Energy Economics, Elsevier, vol. 33(5), pages 1035-1047, September.
    11. Theodoridou, Ifigeneia & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "A feasibility evaluation tool for sustainable cities – A case study for Greece," Energy Policy, Elsevier, vol. 44(C), pages 207-216.
    12. Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
    13. van den Broek, Machteld & Veenendaal, Paul & Koutstaal, Paul & Turkenburg, Wim & Faaij, André, 2011. "Impact of international climate policies on CO2 capture and storage deployment: Illustrated in the Dutch energy system," Energy Policy, Elsevier, vol. 39(4), pages 2000-2019, April.
    14. Pisciella, Paolo & van Beesten, E. Ruben & Tomasgard, Asgeir, 2023. "Efficient coordination of top-down and bottom-up models for energy system design: An algorithmic approach," Energy, Elsevier, vol. 284(C).
    15. Kelly, Scott, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector," Energy, Elsevier, vol. 36(9), pages 5610-5620.
    16. André Sceia & Juan-Carlos Altamirano-Cabrera & Marc Vielle & Nicolas Weidmann, 2012. "Assessment of Acceptable Swiss post-2012 Climate Policies," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 347-380, June.
    17. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "From linking to integration of energy system models and computational general equilibrium models – Effects on equilibria and convergence," Energy, Elsevier, vol. 159(C), pages 1218-1233.
    18. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    19. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    20. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2089-:d:1350125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.