IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i8p1819-1835.html
   My bibliography  Save this article

Modeling of end-use energy consumption in the residential sector: A review of modeling techniques

Author

Listed:
  • Swan, Lukas G.
  • Ugursal, V. Ismet

Abstract

There is a growing interest in reducing energy consumption and the associated greenhouse gas emissions in every sector of the economy. The residential sector is a substantial consumer of energy in every country, and therefore a focus for energy consumption efforts. Since the energy consumption characteristics of the residential sector are complex and inter-related, comprehensive models are needed to assess the technoeconomic impacts of adopting energy efficiency and renewable energy technologies suitable for residential applications. The aim of this paper is to provide an up-to-date review of the various modeling techniques used for modeling residential sector energy consumption. Two distinct approaches are identified: top-down and bottom-up. The top-down approach treats the residential sector as an energy sink and is not concerned with individual end-uses. It utilizes historic aggregate energy values and regresses the energy consumption of the housing stock as a function of top-level variables such as macroeconomic indicators (e.g. gross domestic product, unemployment, and inflation), energy price, and general climate. The bottom-up approach extrapolates the estimated energy consumption of a representative set of individual houses to regional and national levels, and consists of two distinct methodologies: the statistical method and the engineering method. Each technique relies on different levels of input information, different calculation or simulation techniques, and provides results with different applicability. A critical review of each technique, focusing on the strengths, shortcomings and purposes, is provided along with a review of models reported in the literature.

Suggested Citation

  • Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:8:p:1819-1835
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(08)00194-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herriges, Joseph A. & Caves, Douglas W. & Train, K. & Windle, R. J., 1987. "A Bayesian Approach to Combining Conditional Demand and Engineering Models of Electricity Usage," Staff General Research Papers Archive 10794, Iowa State University, Department of Economics.
    2. Burak Guler & V. Ismet Ugursal & Alan S. Fung & Merih Aydinalp-Koksal, 2008. "Impact of energy efficiency upgrade retrofits on the residential energy consumption and Greenhouse Gas emissions in Canada," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 9(4), pages 434-444.
    3. Xavier Labandeira & José M. Labeaga & Miguel Rodríguez, 2006. "A Residential Energy Demand System for Spain," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 87-112.
    4. Canyurt, Olcay Ersel & Ozturk, Harun Kemal & Hepbasli, Arif & Utlu, Zafer, 2005. "Estimating the Turkish residential-commercial energy output based on genetic algorithm (GA) approaches," Energy Policy, Elsevier, vol. 33(8), pages 1011-1019, May.
    5. Robert Bartels & G. Fiebig, 1990. "Integrating Direct Metering and Conditional Demand Analysis for Estimating End-Use Loads," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 79-98.
    6. Emery, A.F. & Kippenhan, C.J., 2006. "A long term study of residential home heating consumption and the effect of occupant behavior on homes in the Pacific Northwest constructed according to improved thermal standards," Energy, Elsevier, vol. 31(5), pages 677-693.
    7. Michael Parti & Cynthia Parti, 1980. "The Total and Appliance-Specific Conditional Demand for Electricity in the Household Sector," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 309-321, Spring.
    8. Bentzen, Jan & Engsted, Tom, 2001. "A revival of the autoregressive distributed lag model in estimating energy demand relationships," Energy, Elsevier, vol. 26(1), pages 45-55.
    9. Caves, Douglas W, et al, 1987. "A Bayesian Approach to Combining Conditional Demand and Engineering Models of Electricity Usage," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 438-448, August.
    10. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2004. "Modeling of the space and domestic hot-water heating energy-consumption in the residential sector using neural networks," Applied Energy, Elsevier, vol. 79(2), pages 159-178, October.
    11. Merih Aydinalp & V. Ismet Ugursal & Alan S. Fung, 2003. "Effects of socioeconomic factors on household appliance, lighting, and space cooling electricity consumption," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 20(3), pages 302-315.
    12. Douthitt, Robin A., 1989. "An economic analysis of the demand for residential space heating fuel in Canada," Energy, Elsevier, vol. 14(4), pages 187-197.
    13. Haas, Reinhard & Schipper, Lee, 1998. "Residential energy demand in OECD-countries and the role of irreversible efficiency improvements," Energy Economics, Elsevier, vol. 20(4), pages 421-442, September.
    14. Marcos Lins & Angela da Silva & Luiz Rosa, 2002. "Regional Variations in Energy Consumption of Appliances: Conditional Demand Analysis Applied to Brazilian Households," Annals of Operations Research, Springer, vol. 117(1), pages 235-246, November.
    15. Young, Denise, 2008. "When do energy-efficient appliances generate energy savings? Some evidence from Canada," Energy Policy, Elsevier, vol. 36(1), pages 34-46, January.
    16. Lutzenhiser, Loren, 1992. "A cultural model of household energy consumption," Energy, Elsevier, vol. 17(1), pages 47-60.
    17. Hsiao, Cheng & Mountain, Dean C & Illman, Kathleen Ho, 1995. "A Bayesian Integration of End-Use Metering and Conditional-Demand Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 315-326, July.
    18. Kadian, Rashmi & Dahiya, R.P. & Garg, H.P., 2007. "Energy-related emissions and mitigation opportunities from the household sector in Delhi," Energy Policy, Elsevier, vol. 35(12), pages 6195-6211, December.
    19. Saha, G.P. & Stephenson, J., 1980. "A model of residential energy use in New Zealand," Energy, Elsevier, vol. 5(2), pages 167-175.
    20. Mark Jaccard & Alison Bailie & John Nyboer, 1996. "CO2 Emission Reduction Costs in the Residential Sector: Behavioral Parameters in a Bottom-Up Simulation Model," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-134.
    21. Dennis J. Aigner & Cynts Sorooshian & Pamela Kerwin, 1984. "Conditional Demand Analysis for Estimating Residential End-Use Load Profiles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 81-98.
    22. Robert Bartels & Denzil G. Fiebig, 2000. "Residential End-Use Electricity Demand: Results from a Designed Experiment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 51-81.
    23. Siller, Thomas & Kost, Michael & Imboden, Dieter, 2007. "Long-term energy savings and greenhouse gas emission reductions in the Swiss residential sector," Energy Policy, Elsevier, vol. 35(1), pages 529-539, January.
    24. Nesbakken, Runa, 1999. "Price sensitivity of residential energy consumption in Norway," Energy Economics, Elsevier, vol. 21(6), pages 493-515, December.
    25. Wan, K. S. Y. & Yik, F. H. W., 2004. "Representative building design and internal load patterns for modelling energy use in residential buildings in Hong Kong," Applied Energy, Elsevier, vol. 77(1), pages 69-85, January.
    26. Larsen, Bodil Merethe & Nesbakken, Runa, 2004. "Household electricity end-use consumption: results from econometric and engineering models," Energy Economics, Elsevier, vol. 26(2), pages 179-200, March.
    27. Aydinalp-Koksal, Merih & Ugursal, V. Ismet, 2008. "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, Elsevier, vol. 85(4), pages 271-296, April.
    28. Fiebig, Denzil G. & Bartels, Robert & Aigner, Dennis J., 1991. "A random coefficient approach to the estimation of residential end-use load profiles," Journal of Econometrics, Elsevier, vol. 50(3), pages 297-327, December.
    29. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
    30. Saidur, R. & Masjuki, H.H. & Jamaluddin, M.Y., 2007. "An application of energy and exergy analysis in residential sector of Malaysia," Energy Policy, Elsevier, vol. 35(2), pages 1050-1063, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    3. Papineau, Maya & Yassin, Kareman & Newsham, Guy & Brice, Sarah, 2021. "Conditional demand analysis as a tool to evaluate energy policy options on the path to grid decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Shigeru Matsumoto, 2015. "Electric Appliance Ownership and Usage: Application of Conditional Demand Analysis to Japanese Household Data," Proceedings of International Academic Conferences 3105452, International Institute of Social and Economic Sciences.
    5. Matsumoto, Shigeru, 2016. "How do household characteristics affect appliance usage? Application of conditional demand analysis to Japanese household data," Energy Policy, Elsevier, vol. 94(C), pages 214-223.
    6. Marcin Zygmunt & Dariusz Gawin, 2021. "Application of Artificial Neural Networks in the Urban Building Energy Modelling of Polish Residential Building Stock," Energies, MDPI, vol. 14(24), pages 1-15, December.
    7. Hannah Goozee, 2017. "Energy, poverty and development: a primer for the Sustainable Development Goals," Working Papers 156, International Policy Centre for Inclusive Growth.
    8. Aydinalp-Koksal, Merih & Ugursal, V. Ismet, 2008. "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, Elsevier, vol. 85(4), pages 271-296, April.
    9. Hannah Goozee, 2017. "Energy, Poverty and Development: A Primer for the Sustainable Development Goals," Working Papers id:11933, eSocialSciences.
    10. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    11. Bartels, Robert & Fiebig, Denzil G., 1995. "Optimal design in end-use metering experiments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 39(3), pages 305-309.
    12. Hanne Marit Dalen and Bodil M. Larsen, 2015. "Residential End-use Electricity Demand: Development over Time," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    13. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    14. Larsen, Bodil Merethe & Nesbakken, Runa, 2004. "Household electricity end-use consumption: results from econometric and engineering models," Energy Economics, Elsevier, vol. 26(2), pages 179-200, March.
    15. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    16. Farzan, Farbod & Jafari, Mohsen A. & Gong, Jie & Farzan, Farnaz & Stryker, Andrew, 2015. "A multi-scale adaptive model of residential energy demand," Applied Energy, Elsevier, vol. 150(C), pages 258-273.
    17. Frondel, Manuel & Sommer, Stephan & Vance, Colin, 2019. "Heterogeneity in German Residential Electricity Consumption: A quantile regression approach," Energy Policy, Elsevier, vol. 131(C), pages 370-379.
    18. Hanne Marit Dalen & Bodil M. Larsen, 2013. "Residential end-use electricity demand. Development over time," Discussion Papers 736, Statistics Norway, Research Department.
    19. Yanxia Li & Chao Wang & Sijie Zhu & Junyan Yang & Shen Wei & Xinkai Zhang & Xing Shi, 2020. "A Comparison of Various Bottom-Up Urban Energy Simulation Methods Using a Case Study in Hangzhou, China," Energies, MDPI, vol. 13(18), pages 1-23, September.
    20. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:8:p:1819-1835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.