IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7565-d589621.html
   My bibliography  Save this article

End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study

Author

Listed:
  • Omar Shafqat

    (Department of Energy Technology, Royal Institute of Technology KTH, 100 44 Stockholm, Sweden)

  • Elena Malakhtka

    (Department of Energy Technology, Royal Institute of Technology KTH, 100 44 Stockholm, Sweden)

  • Nina Chrobot

    (Department of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, 03-815 Warsaw, Poland)

  • Per Lundqvist

    (Department of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, 03-815 Warsaw, Poland)

Abstract

End use energy services have an important role in the ongoing energy transition process by improving the value proposition to the customer through better needs fulfillment and experience and providing system value to the energy system. This study presents a framework for end use energy services, developed as a result of co-creation with multiple stakeholders for a case study in a living lab context. The framework has been co-created using the principles of systems thinking to identify and map both existing and emerging elements and interactions within the energy system and customers. The framework is organized to include aspects from energy system and human system perspectives and divides the energy services development process into three distinct stages. The development stages comprise the strategic planning stage, service design stage, and solution stage. Key considerations are provided for each stage to develop a clearer understanding of the overall end use energy service process.

Suggested Citation

  • Omar Shafqat & Elena Malakhtka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7565-:d:589621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azadeh Shomali & Jonatan Pinkse, 2016. "The consequences of smart grids for the business model of electricity firms," Post-Print hal-02022695, HAL.
    2. Graciela Chichilnisky, 1997. "What Is Sustainable Development?," Land Economics, University of Wisconsin Press, vol. 73(4), pages 467-491.
    3. Di Silvestre, Maria Luisa & Favuzza, Salvatore & Riva Sanseverino, Eleonora & Zizzo, Gaetano, 2018. "How Decarbonization, Digitalization and Decentralization are changing key power infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 483-498.
    4. van Ruijven, Bas & de Vries, Bert & van Vuuren, Detlef P. & van der Sluijs, Jeroen P., 2010. "A global model for residential energy use: Uncertainty in calibration to regional data," Energy, Elsevier, vol. 35(1), pages 269-282.
    5. Hiteva, Ralitsa & Foxon, Timothy J., 2021. "Beware the value gap: Creating value for users and for the system through innovation in digital energy services business models," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    6. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    7. Sartori, Igor & Wachenfeldt, Bjrn Jensen & Hestnes, Anne Grete, 2009. "Energy demand in the Norwegian building stock: Scenarios on potential reduction," Energy Policy, Elsevier, vol. 37(5), pages 1614-1627, May.
    8. Marino, Angelica & Bertoldi, Paolo & Rezessy, Silvia & Boza-Kiss, Benigna, 2011. "A snapshot of the European energy service market in 2010 and policy recommendations to foster a further market development," Energy Policy, Elsevier, vol. 39(10), pages 6190-6198, October.
    9. Erlinghagen, Sabine & Markard, Jochen, 2012. "Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change," Energy Policy, Elsevier, vol. 51(C), pages 895-906.
    10. Gebauer, Heiko & Fleisch, Elgar & Friedli, Thomas, 2005. "Overcoming the Service Paradox in Manufacturing Companies," European Management Journal, Elsevier, vol. 23(1), pages 14-26, February.
    11. Richter, Mario, 2013. "Business model innovation for sustainable energy: German utilities and renewable energy," Energy Policy, Elsevier, vol. 62(C), pages 1226-1237.
    12. Elena Malakhatka & Liridona Sopjani & Per Lundqvist, 2021. "Co-Creating Service Concepts for the Built Environment Based on the End-User’s Daily Activities Analysis: KTH Live-in-Lab Explorative Case Study," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    13. Nissing, Christian & von Blottnitz, Harro, 2010. "An economic model for energisation and its integration into the urban energy planning process," Energy Policy, Elsevier, vol. 38(5), pages 2370-2378, May.
    14. Klinge Jacobsen, Henrik, 1998. "Integrating the bottom-up and top-down approach to energy-economy modelling: the case of Denmark," Energy Economics, Elsevier, vol. 20(4), pages 443-461, September.
    15. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    16. Vine, Edward, 2005. "An international survey of the energy service company (ESCO) industry," Energy Policy, Elsevier, vol. 33(5), pages 691-704, March.
    17. Olerup, Brita, 1998. "Energy services a smoke screen," Energy Policy, Elsevier, vol. 26(9), pages 715-724, August.
    18. B. Demil & X. Lecocq, 2010. "Business model evolution : in search of dynamic consistency," Post-Print hal-00572915, HAL.
    19. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    20. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    21. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    22. Brounen, Dirk & Kok, Nils & Quigley, John M., 2012. "Residential energy use and conservation: Economics and demographics," European Economic Review, Elsevier, vol. 56(5), pages 931-945.
    23. Cullen, Jonathan M. & Allwood, Julian M., 2010. "The efficient use of energy: Tracing the global flow of energy from fuel to service," Energy Policy, Elsevier, vol. 38(1), pages 75-81, January.
    24. Sujith Nair & Hanna Paulose & Miguel Palacios & Javier Tafur, 2013. "Service orientation: effectuating business model innovation," The Service Industries Journal, Taylor & Francis Journals, vol. 33(9-10), pages 958-975, July.
    25. Hannon, Matthew J. & Foxon, Timothy J. & Gale, William F., 2013. "The co-evolutionary relationship between Energy Service Companies and the UK energy system: Implications for a low-carbon transition," Energy Policy, Elsevier, vol. 61(C), pages 1031-1045.
    26. Suhonen, Niko & Okkonen, Lasse, 2013. "The Energy Services Company (ESCo) as business model for heat entrepreneurship-A case study of North Karelia, Finland," Energy Policy, Elsevier, vol. 61(C), pages 783-787.
    27. Reister, David B. & Devine, Warren D., 1981. "Total costs of energy services," Energy, Elsevier, vol. 6(4), pages 305-315.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helms, Thorsten, 2016. "Asset transformation and the challenges to servitize a utility business model," Energy Policy, Elsevier, vol. 91(C), pages 98-112.
    2. Pereira, Guillermo Ivan & Niesten, Eva & Pinkse, Jonatan, 2022. "Sustainable energy systems in the making: A study on business model adaptation in incumbent utilities," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    3. Kindström, Daniel & Ottosson, Mikael, 2016. "Local and regional energy companies offering energy services: Key activities and implications for the business model," Applied Energy, Elsevier, vol. 171(C), pages 491-500.
    4. Theodoridou, Ifigeneia & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "A feasibility evaluation tool for sustainable cities – A case study for Greece," Energy Policy, Elsevier, vol. 44(C), pages 207-216.
    5. Gouveia, João Pedro & Fortes, Patrícia & Seixas, Júlia, 2012. "Projections of energy services demand for residential buildings: Insights from a bottom-up methodology," Energy, Elsevier, vol. 47(1), pages 430-442.
    6. Bertoldi, Paolo & Boza-Kiss, Benigna, 2017. "Analysis of barriers and drivers for the development of the ESCO markets in Europe," Energy Policy, Elsevier, vol. 107(C), pages 345-355.
    7. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    8. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    9. Giraudet, Louis-Gaëtan & Guivarch, Céline & Quirion, Philippe, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Energy Economics, Elsevier, vol. 34(2), pages 426-445.
    10. Polzin, Friedemann & von Flotow, Paschen & Nolden, Colin, 2016. "What encourages local authorities to engage with energy performance contracting for retrofitting? Evidence from German municipalities," Energy Policy, Elsevier, vol. 94(C), pages 317-330.
    11. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    12. Martin T. Ross, Patrick T. Sullivan, Allen A. Fawcett, and Brooks M. Depro, 2014. "Investigating Technology Options for Climate Policies: Differentiated Roles in ADAGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    13. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    14. Pablo Pintos & Pedro Linares, 2016. "Assessing the EU ETS with an Integrated Model," Working Papers 01-2016, Economics for Energy.
    15. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    16. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    17. Anandarajah, Gabrial & Strachan, Neil, 2010. "Interactions and implications of renewable and climate change policy on UK energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6724-6735, November.
    18. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    19. Tereza Rogić Lugarić & Domagoj Dodig & Jasna Bogovac, 2019. "Effectiveness of Blending Alternative Procurement Models and EU Funding Mechanisms Based on Energy Efficiency Case Study Simulation," Energies, MDPI, vol. 12(9), pages 1-15, April.
    20. Morley, Janine, 2018. "Rethinking energy services: The concept of ‘meta-service’ and implications for demand reduction and servicizing policy," Energy Policy, Elsevier, vol. 122(C), pages 563-569.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7565-:d:589621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.