IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i4p1395-1403.html
   My bibliography  Save this article

Marginal abatement costs of greenhouse gas emissions: A meta-analysis

Author

Listed:
  • Kuik, Onno
  • Brander, Luke
  • Tol, Richard S.J.

Abstract

In this paper, we carry out a meta-analysis of recent studies into the costs of greenhouse gas mitigation policies that aim at the long-term stabilisation of these gases in the atmosphere. We find the cost estimates of the studies to be sensitive to the stringency of the stabilisation target, the assumed emissions baseline, the way in which the time profile of emissions is determined in the model, the choice of control variable (CO2 only versus multigas), the number of regions and energy sources in the model and, to a lesser degree, the scientific "forum" in which the study was developed. We find that marginal abatement costs of the stringent long-term targets that are currently considered by the European Commission are still very uncertain but might exceed the costs that have been suggested by recent policy assessments.

Suggested Citation

  • Kuik, Onno & Brander, Luke & Tol, Richard S.J., 2009. "Marginal abatement costs of greenhouse gas emissions: A meta-analysis," Energy Policy, Elsevier, vol. 37(4), pages 1395-1403, April.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:4:p:1395-1403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00729-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Reilly, Marcus Sarofim, Sergey Paltsev and Ronald Prinn, 2006. "The Role of Non-CO2 GHGs in Climate Policy: Analysis Using the MIT IGSM," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 503-520.
    2. Atsushi Kurosawa, 2006. "Multigas Mitigation: An Economic Analysis Using GRAPE Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 275-288.
    3. Valentina Bosetti, Carlo Carraro and Marzio Galeotti, 2006. "The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 191-206.
    4. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    5. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    6. Fredrik Hedenus, Christian Azar and Kristian Lindgren, 2006. "Induced Technological Change in a Limited Foresight Optimization Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 109-122.
    7. Richard S.J. Tol, 2006. "Multi-Gas Emission Reduction for Climate Change Policy: An Application of Fund," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 235-250.
    8. Ottmar Edenhofer, Kai Lessmann, Claudia Kemfert, Michael Grubb and Jonathan Kohler, 2006. "Induced Technological Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 57-108.
    9. John P. Weyant, Francisco C. de la Chesnaye, and Geoff J. Blanford, 2006. "Overview of EMF-21: Multigas Mitigation and Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-32.
    10. Jon Nelson & Peter Kennedy, 2009. "The Use (and Abuse) of Meta-Analysis in Environmental and Natural Resource Economics: An Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(3), pages 345-377, March.
    11. Donald A. Hanson and John A. Skip Laitner, 2006. "Technology Policy and World Greenhouse Gas Emissions in the AMIGA Modeling System," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 355-372.
    12. Claudia Kemfert, Truong P. Truong, and Thomas Bruckner, 2006. "Economic Impact Assessment of Climate Change - A Multi-gas Investigation with WIAGEM-GTAPEL-ICM," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 441-460.
    13. Guy Jakeman and Brian S. Fisher, 2006. "Benefits of Multi-Gas Mitigation: An Application of the Global Trade and Environment Model (GTEM)," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 323-342.
    14. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    15. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    16. Allen A. Fawcett and Ronald D. Sands, 2006. "Non-CO2 Greenhouse Gases in the Second Generation Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 305-322.
    17. Reyer Gerlagh, 2006. "ITC in a Global Growth-Climate Model with CCS: The Value of Induced Technical Change for Climate Stabilization," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 223-240.
    18. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    19. David Popp, 2006. "Comparison of Climate Policies in the ENTICE-BR Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 163-174.
    20. Junichi Fujino, Rajesh Nair, Mikiko Kainuma, Toshihiko Masui and Yuzuru Matsuoka, 2006. "Multi-gas Mitigation Analysis on Stabilization Scenarios Using Aim Global Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 343-354.
    21. Clarke, Leon & Weyant, John & Edmonds, Jae, 2008. "On the sources of technological change: What do the models assume," Energy Economics, Elsevier, vol. 30(2), pages 409-424, March.
    22. Terry Barker, Haoran Pan, Jonathan Kohler, Rachel Warren, and Sarah Winne, 2006. "Decarbonizing the Global Economy with Induced Technological Change: Scenarios to 2100 using E3MG," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 241-258.
    23. Shilpa Rao and Keywan Riahi, 2006. "The Role of Non-CO2 Greenhouse Gases in Climate Change Mitigation: Long-term Scenarios for the 21st Century," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 177-200.
    24. Shilpa Rao, Ilkka Keppo and Keywan Riahi, 2006. "Importance of Technological Change and Spillovers in Long-Term Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 123-140.
    25. Alain Bernard, Marc Vielle and Laurent Viguier, 2006. "Burden Sharing Within a Multi-Gas Strategy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 289-304.
    26. Asbjorn Aaheim, Jan S. Fuglestvedt and Odd Godal, 2006. "Costs Savings of a Flexible Multi-Gas Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 485-502.
    27. T. D. Stanley, 2001. "Wheat from Chaff: Meta-analysis as Quantitative Literature Review," Journal of Economic Perspectives, American Economic Association, vol. 15(3), pages 131-150, Summer.
    28. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
    29. Kejun Jiang, Xiulian Hu, Zhu Songli, 2006. "Multi-Gas Mitigation Analysis by IPAC," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 425-440.
    30. R. Crassous & Jean Charles Hourcade & O. Sassi, 2006. "Endogenous structural change and climate targets modeling experiments with imaclim-R," Post-Print hal-00719272, HAL.
    31. Steven J. Smith and T.M.L. Wigley, 2006. "Multi-Gas Forcing Stabilization with Minicam," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 373-392.
    32. Alan S. Manne and Richard G. Richels, 2006. "The Role of Non-CO2 Greenhouse Gases and Carbon Sinks in Meeting Climate Objectives," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 393-404.
    33. Fuminori Sano, Keigo Akimoto, Takashi Homma and Toshimasa Tomoda, 2006. "Analysis of Technological Portfolios for CO2 Stabilizations and Effects of Technological Changes," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 141-162.
    34. D.P. van Vuuren, B. Eickhout, P.L. Lucas and M.G.J. den Elzen, 2006. "Long-Term Multi-Gas Scenarios to Stabilise Radiative Forcing - Exploring Costs and Benefits Within an Integrated Assessment Framework," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 201-234.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:4:p:1395-1403. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.