IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Endogenizing Technological Change: Matching Empirical Evidence to Modeling Needs

  • Pizer, William A.

    ()

    (Resources for the Future)

  • Popp, David

Technologies to reduce significantly fossil-fuel emissions currently are unavailable or only available at high cost. In light of this, the amount of research on the pace, direction, and benefits of environmentally friendly technological change has grown dramatically in recent years. This research includes empirical estimates of these effects and modeling exercises designed to simulate endogenous technological change in response to climate policy. Unfortunately, few attempts have been made to connect these two streams of research. This paper attempts to bridge that gap, reviewing both the empirical and modeling literature on technological change. Our goal is to provide an agenda for how both empirical and modeling research in these areas can move forward in a complementary fashion. In doing so, we discuss how models used for policy evaluation can better capture empirical phenomena and how empirical research can better address the needs of models used for policy evaluation.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.rff.org/RFF/documents/RFF-DP-07-11.pdf
Download Restriction: no

Paper provided by Resources For the Future in its series Discussion Papers with number dp-07-11.

as
in new window

Length:
Date of creation: 31 Mar 2007
Date of revision:
Handle: RePEc:rff:dpaper:dp-07-11
Contact details of provider: Web page: http://www.rff.org

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Patrik Söderholm & Ger Klaassen, 2007. "Wind Power in Europe: A Simultaneous Innovation–Diffusion Model," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 36(2), pages 163-190, February.
  2. Gray, Wayne B & Shadbegian, Ronald J, 1998. "Environmental Regulation, Investment Timing, and Technology Choice," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 235-56, June.
  3. Malte Schwoon & Richard S.J. Tol, 2004. "Optimal CO2-abatement with socio-economic inertia and induced technological change," Working Papers FNU-37, Research unit Sustainability and Global Change, Hamburg University, revised Jan 2004.
  4. Adam B. Jaffe, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits and Market Value," NBER Working Papers 1815, National Bureau of Economic Research, Inc.
  5. René Kemp, 1998. "The Diffusion of Biological Waste-Water Treatment Plants in the Dutch Food and Beverage Industry," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 12(1), pages 113-136, July.
  6. Austan Goolsbee, 1998. "Does Government R&D Policy Mainly Benefit Scientists and Engineers?," NBER Working Papers 6532, National Bureau of Economic Research, Inc.
  7. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
  8. Pakes, Ariel, 1985. "On Patents, R&D, and the Stock Market Rate of Return," Journal of Political Economy, University of Chicago Press, vol. 93(2), pages 390-409, April.
  9. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
  10. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
  11. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
  12. Yixin Dai & David Popp & Stuart Bretschneider, 2005. "Institutions and intellectual property: The influence of institutional forces on university patenting," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 24(3), pages 579-598.
  13. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
  14. Zvi Griliches, 1979. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," Bell Journal of Economics, The RAND Corporation, vol. 10(1), pages 92-116, Spring.
  15. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
  16. Alan Manne & Richard Richels, 1992. "Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits," MIT Press Books, The MIT Press, edition 1, volume 1, number 026213280x, June.
  17. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
  18. Mansfield, Edwin, et al, 1977. "Social and Private Rates of Return from Industrial Innovations," The Quarterly Journal of Economics, MIT Press, vol. 91(2), pages 221-40, May.
  19. Keller, Wolfgang, 2002. "International Technology Diffusion," CEPR Discussion Papers 3133, C.E.P.R. Discussion Papers.
  20. Suzi Kerr & Richard G. Newell, 2003. "Policy-Induced Technology Adoption: Evidence from the U.S. Lead Phasedown," Journal of Industrial Economics, Wiley Blackwell, vol. 51(3), pages 317-343, 09.
  21. Richard S.J. Tol, 2006. "Why Worry About Climate Change? A Research Agenda," Working Papers 2006.136, Fondazione Eni Enrico Mattei.
  22. Löschel, Andreas, 2001. "Technological change in economic models of environmental policy: a survey," ZEW Discussion Papers 01-62, ZEW - Zentrum für Europäische Wirtschaftsforschung / Center for European Economic Research.
  23. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
  24. Fischer, Carolyn & Newell, Richard, 2004. "Environmental and Technology Policies for Climate Mitigation," Discussion Papers dp-04-05, Resources For the Future.
  25. Mowery, David & Rosenberg, Nathan, 1979. "The influence of market demand upon innovation: a critical review of some recent empirical studies," Research Policy, Elsevier, vol. 8(2), pages 102-153, April.
  26. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516 Elsevier.
  27. Ottmar Edenhofer, Kai Lessmann, Claudia Kemfert, Michael Grubb and Jonathan Kohler , 2006. "Induced Technological Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 57-108.
  28. McFarland, J. R. & Reilly, J. M. & Herzog, H. J., 2004. "Representing energy technologies in top-down economic models using bottom-up information," Energy Economics, Elsevier, vol. 26(4), pages 685-707, July.
  29. Sir Ian Byatt & Bob Carter & Ian Castles & Chris de Freitas & Indur M. Goklany & David Henderson & David Holland & Lord Lawson of Blaby & Richard S. Lindzen & Ross McKitrick & Julian Morris & Sir Alan, 2006. "The Stern Review: A Dual Critique," World Economics, World Economics, Economic & Financial Publishing, 1 Ivory Square, Plantation Wharf, London, United Kingdom, SW11 3UE, vol. 7(4), pages 165-232, October.
  30. Rosenberg, Nathan, 1974. "Science, Invention and Economic Growth," Economic Journal, Royal Economic Society, vol. 84(333), pages 90-108, March.
  31. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
  32. Friedrich Wu, 2006. "What Could Brake China’s Rapid Ascent in the World Economy?," World Economics, World Economics, Economic & Financial Publishing, 1 Ivory Square, Plantation Wharf, London, United Kingdom, SW11 3UE, vol. 7(3), pages 63-87, July.
  33. Vincent M. Otto & Andreas Löschel & John Reilly, 2006. "Directed Technical Change and Climate Policy," Working Papers 2006.81, Fondazione Eni Enrico Mattei.
  34. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
  35. Blair,Roger D. & Cotter,Thomas F., 2005. "Intellectual Property," Cambridge Books, Cambridge University Press, number 9780521833165.
  36. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1998. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," NBER Working Papers 6437, National Bureau of Economic Research, Inc.
  37. Jaffe Adam B. & Stavins Robert N., 1995. "Dynamic Incentives of Environmental Regulations: The Effects of Alternative Policy Instruments on Technology Diffusion," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages S43-S63, November.
  38. David Popp, 2006. "They Don'T Invent Them Like They Used To: An Examination Of Energy Patent Citations Over Time," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(8), pages 753-776.
  39. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
  40. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
  41. Pizer, William A., 2002. "Combining price and quantity controls to mitigate global climate change," Journal of Public Economics, Elsevier, vol. 85(3), pages 409-434, September.
  42. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
  43. Richard C. Levin & Alvin K. Klevorick & Richard R. Nelson & Sidney G. Winter, 1987. "Appropriating the Returns from Industrial Research and Development," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 18(3), pages 783-832.
  44. Coleman Bazelon & Kent Smetters, 1999. "Discounting Inside the Washington D.C. Beltway," Journal of Economic Perspectives, American Economic Association, vol. 13(4), pages 213-228, Fall.
  45. Sampat, Bhaven N., 2006. "Patenting and US academic research in the 20th century: The world before and after Bayh-Dole," Research Policy, Elsevier, vol. 35(6), pages 772-789, July.
  46. David Popp, 2006. "Exploring Links Between Innovation and Diffusion: Adoption of NOx Control Technologies at U.S. Coal-Fired Power Plants," NBER Working Papers 12119, National Bureau of Economic Research, Inc.
  47. Blair,Roger D. & Cotter,Thomas F., 2005. "Intellectual Property," Cambridge Books, Cambridge University Press, number 9780521540674.
  48. Popp, David, 2006. "Innovation in climate policy models: Implementing lessons from the economics of R&D," Energy Economics, Elsevier, vol. 28(5-6), pages 596-609, November.
  49. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
  50. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
  51. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-07-11. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.