IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2009.123.html
   My bibliography  Save this paper

At Home and Abroad: An Empirical Analysis of Innovation and Diffusion in Energy-Efficient Technologies

Author

Listed:
  • Elena Verdolini

    (Fondazione Eni Enrico Mattei and Catholic University of Milan)

  • Marzio Galeotti

    (University of Milan and IEFE-Bocconi)

Abstract

This paper contributes to the induced innovation literature by extending the analysis of supply and demand determinants of innovation in energy-efficient technologies to account for international knowledge flows and spillovers. In the first part of the paper we select a sample of 38 innovating countries and we study how knowledge related to energy-efficient technologies flows across geographical and technological space. We demonstrate that higher geographical and technological distances are associated with a lower probability of knowledge flow. In the second part of the paper, we use our previous estimates to construct stocks of internal and external knowledge for a panel of 17 countries and present an econometric analysis of the supply and demand determinants of innovation accounting for international knowledge spillovers. Our results confirm the role of demand-pull effects, as proxied by energy prices, as well as that of technological opportunity, as proxied by the knowledge stocks. In particular, this paper provides evidence that spillovers between countries have a significant positive impact on further innovation in energy-efficient technologies.

Suggested Citation

  • Elena Verdolini & Marzio Galeotti, 2009. "At Home and Abroad: An Empirical Analysis of Innovation and Diffusion in Energy-Efficient Technologies," Working Papers 2009.123, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2009.123
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/ndl2009-123.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Feenstra, Robert C., 1996. "Trade and uneven growth," Journal of Development Economics, Elsevier, vol. 49(1), pages 229-256, April.
    2. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    3. F. M. Scherer, 1986. "Innovation and Growth: Schumpeterian Perspectives," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262691027, December.
    4. Gene M. Grossman & Elhanan Helpman, 1994. "Endogenous Innovation in the Theory of Growth," Journal of Economic Perspectives, American Economic Association, vol. 8(1), pages 23-44, Winter.
    5. Zvi Griliches, 1998. "Productivity and R&D at the Firm Level," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 100-133, National Bureau of Economic Research, Inc.
    6. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    7. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    8. Castelnuovo, Efrem & Galeotti, Marzio & Gambarelli, Gretel & Vergalli, Sergio, 2005. "Learning-by-Doing vs. Learning by Researching in a model of climate change policy analysis," Ecological Economics, Elsevier, vol. 54(2-3), pages 261-276, August.
    9. Zvi Griliches, 1984. "R&D, Patents, and Productivity," NBER Books, National Bureau of Economic Research, Inc, number gril84-1.
    10. Keith Pavitt & Luc Soete, 1980. "Innovative Activities and Export Shares: some Comparisons between Industries and Countries," Palgrave Macmillan Books, in: Keith Pavitt (ed.), Technical Innovation and British Economic Performance, chapter 3, pages 38-66, Palgrave Macmillan.
    11. Kenneth Gillingham & Richard G. Newell & Karen Palmer, 2009. "Energy Efficiency Economics and Policy," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 597-620, September.
    12. Stavins, Robert, 2004. "Environmental Economics," RFF Working Paper Series dp-04-54, Resources for the Future.
    13. Binswanger, Hans P, 1974. "A Microeconomic Approach to Induced Innovation," Economic Journal, Royal Economic Society, vol. 84(336), pages 940-958, December.
    14. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    15. Sokoloff, Kenneth L. & Khan, B. Zorina, 1990. "The Democratization of Invention During Early Industrialization: Evidence from the United States, 1790–1846," The Journal of Economic History, Cambridge University Press, vol. 50(2), pages 363-378, June.
    16. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    17. Wolfgang Keller, 2002. "Geographic Localization of International Technology Diffusion," American Economic Review, American Economic Association, vol. 92(1), pages 120-142, March.
    18. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    19. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    20. repec:fth:harver:1473 is not listed on IDEAS
    21. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    22. Branstetter, Lee G., 2001. "Are knowledge spillovers international or intranational in scope?: Microeconometric evidence from the U.S. and Japan," Journal of International Economics, Elsevier, vol. 53(1), pages 53-79, February.
    23. Mowery, David & Rosenberg, Nathan, 1993. "The influence of market demand upon innovation: A critical review of some recent empirical studies," Research Policy, Elsevier, vol. 22(2), pages 107-108, April.
    24. Laura Bottazzi & Giovanni Peri, 2007. "The International Dynamics of R&D and Innovation in the Long Run and in The Short Run," Economic Journal, Royal Economic Society, vol. 117(518), pages 486-511, March.
    25. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    26. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    27. Ricardo J. Caballero & Adam B. Jaffe, 1993. "How High Are the Giants' Shoulders: An Empirical Assessment of Knowledge Spillovers and Creative Destruction in a Model of Economic Growth," NBER Chapters, in: NBER Macroeconomics Annual 1993, Volume 8, pages 15-86, National Bureau of Economic Research, Inc.
    28. Megan MacGarvie, 2006. "Do Firms Learn from International Trade?," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 46-60, February.
    29. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    30. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    31. Francisco L. Rivera-Batiz & Luis A. Rivera-Batiz, 2018. "Economic Integration and Endogenous Growth," World Scientific Book Chapters, in: Francisco L Rivera-Batiz & Luis A Rivera-Batiz (ed.), International Trade, Capital Flows and Economic Development, chapter 1, pages 3-32, World Scientific Publishing Co. Pte. Ltd..
    32. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    33. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    34. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    35. Giovanni Peri, 2005. "Determinants of Knowledge Flows and Their Effect on Innovation," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 308-322, May.
    36. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    37. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    38. Basberg, Bjorn L., 1987. "Patents and the measurement of technological change: A survey of the literature," Research Policy, Elsevier, vol. 16(2-4), pages 131-141, August.
    39. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    40. Ariel Pakes & Zvi Griliches, 1984. "Patents and R&D at the Firm Level: A First Look," NBER Chapters, in: R&D, Patents, and Productivity, pages 55-72, National Bureau of Economic Research, Inc.
    41. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    42. Scherer, F M, 1982. "Demand-Pull and Technological Invention: Schmookler Revisited," Journal of Industrial Economics, Wiley Blackwell, vol. 30(3), pages 225-237, March.
    43. Manuel Trajtenberg & Adam B. Jaffe & Michael S. Fogarty, 2000. "Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors," American Economic Review, American Economic Association, vol. 90(2), pages 215-218, May.
    44. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    45. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    46. Clarke, Leon & Weyant, John & Birky, Alicia, 2006. "On the sources of technological change: Assessing the evidence," Energy Economics, Elsevier, vol. 28(5-6), pages 579-595, November.
    47. Paul M. Romer, 1994. "The Origins of Endogenous Growth," Journal of Economic Perspectives, American Economic Association, vol. 8(1), pages 3-22, Winter.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    2. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    3. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    4. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    5. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    6. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    7. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    8. Dechezlepretre, Antoine & Glachant, Matthieu & Hascic, Ivan & Johnstone, Nick & Meniere, Yann, 2009. "Invention and Transfer of Climate Change Mitigation Technologies on a Global Scale: A Study Drawing on Patent Data," Sustainable Development Papers 54361, Fondazione Eni Enrico Mattei (FEEM).
    9. Peri, Giovanni, 2003. "Knowledge Flows, R&D Spillovers and Innovation," ZEW Discussion Papers 03-40, ZEW - Leibniz Centre for European Economic Research.
    10. Jin, Wei, 2015. "Can China harness globalization to reap domestic carbon savings? Modeling international technology diffusion in a multi-region framework," China Economic Review, Elsevier, vol. 34(C), pages 64-82.
    11. David Popp, 2003. "Lessons from Patents: Using Patents To Measure Technological Change in Environmental Models," NBER Working Papers 9978, National Bureau of Economic Research, Inc.
    12. David Popp, 2004. "International Innovation and Diffusion of Air Pollution Control Technologies: The Effects of NOX and SO2 Regulation in the US, Japan, and Germany," NBER Working Papers 10643, National Bureau of Economic Research, Inc.
    13. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    14. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    15. Kim, Yeong Jae & Brown, Marilyn, 2019. "Impact of domestic energy-efficiency policies on foreign innovation: The case of lighting technologies," Energy Policy, Elsevier, vol. 128(C), pages 539-552.
    16. David Popp, 2005. "They Don't Invent Them Like They Used To: An Examination of Energy Patent Citations Over Time," NBER Working Papers 11415, National Bureau of Economic Research, Inc.
    17. Wei Jin, 2012. "Can Technological Innovation Help China Take on Its Climate Responsibility? A Computable General Equilibrium Analysis," CAMA Working Papers 2012-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    18. Francesco Vona & Francesco Nicolli & Lionel Nesta, 2012. "Determinants of renewable energy innovation: environmental policies vs. market regulation," Sciences Po publications 2012-05, Sciences Po.
    19. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    20. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    21. Franco Malerba & Maria Mancusi & Fabio Montobbio, 2013. "Innovation, international R&D spillovers and the sectoral heterogeneity of knowledge flows," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 149(4), pages 697-722, December.

    More about this item

    Keywords

    Innovation; Technology Diffusion; Knowledge Spillovers; Energy-Efficient Technologies;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2009.123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.