IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2007.82.html
   My bibliography  Save this paper

International Energy R&D Spillovers and the Economics of Greenhouse Gas Atmospheric Stabilization

Author

Listed:
  • Valentina Bosetti

    (Fondazione Eni Enrico Mattei)

  • Carlo Carraro

    (Fondazione Eni Enrico Mattei, University of Venice, CEPR, CESifo and CMCC)

  • Emanuele Massetti

    (Fondazione Eni Enrico Mattei, Catholic University of Milan and CMCC)

  • Massimo Tavoni

    (Fondazione Eni Enrico Mattei, Catholic University of Milan and CMCC)

Abstract

It is widely recognized that technological change has the potential to reduce GHG emissions without compromising economic growth; hence, any better understanding of the process of technological innovation is likely to increase our knowledge of mitigation possibilities and costs. This paper explores how international knowledge flows affect the dynamics of the domestic R&D sector and the main economic and environmental variables. The analysis is performed using WITCH, a dynamic regional model of the world economy, in which energy technical change is endogenous. The focus is on disembodied energy R&D international spillovers. The knowledge pool from which regions draw foreign ideas differs between High Income and Low Income countries. Absorption capacity is also endogenous in the model. The basic questions are as follows. Do knowledge spillovers enhance energy technological innovation in different regions of the world? Does the speed of innovation increase? Or do free-riding incentives prevail and international spillovers crowd out domestic R&D efforts? What is the role of domestic absorption capacity and of policies designed to enhance it? Do greenhouse gas stabilization costs drop in the presence of international technological spillovers? The new specification of the WITCH model presented in this paper enables us to answer these questions. Our analysis shows that international knowledge spillovers tend to increase free-riding incentives and decrease the investments in energy R&D. The strongest cuts in energy R&D investments are recorded among High Income countries, where international knowledge flows crowd out domestic R&D efforts. The overall domestic pool of knowledge, and thus total net GHG stabilization costs, remain largely unaffected. International spillovers, however, are also an important policy channel. We therefore analyze the implication of a policy mix in which climate policy is combined with a technology policy designed to enhance absorption capacity in developing countries. Significant positive impacts on the costs of stabilising GHG concentrations are singled out. Finally, a sensitivity analysis shows that High Income countries are more responsive than Low Income countries to changes in the parameters and thus suggests to focus additional empirical research efforts on the former.

Suggested Citation

  • Valentina Bosetti & Carlo Carraro & Emanuele Massetti & Massimo Tavoni, 2007. "International Energy R&D Spillovers and the Economics of Greenhouse Gas Atmospheric Stabilization," Working Papers 2007.82, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2007.82
    as

    Download full text from publisher

    File URL: http://www.feem.it/userfiles/attach/Publication/NDL2007/NDL2007-082.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. d'Aspremont, Claude & Jacquemin, Alexis, 1988. "Cooperative and Noncooperative R&D in Duopoly with Spillovers," American Economic Review, American Economic Association, vol. 78(5), pages 1133-1137, December.
    2. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    3. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    4. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    5. Goolsbee, Austan, 1998. "Does Government R&D Policy Mainly Benefit Scientists and Engineers?," American Economic Review, American Economic Association, vol. 88(2), pages 298-302, May.
    6. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 577-598.
    7. Barrett, Scott, 1994. "Self-Enforcing International Environmental Agreements," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 878-894, Supplemen.
    8. Daron Acemoglu & Philippe Aghion & Fabrizio Zilibotti, 2006. "Distance to Frontier, Selection, and Economic Growth," Journal of the European Economic Association, MIT Press, vol. 4(1), pages 37-74, March.
    9. Keller, Wolfgang, 2002. "Trade and the Transmission of Technology," Journal of Economic Growth, Springer, vol. 7(1), pages 5-24, March.
    10. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    11. Ricardo J. Caballero & Adam B. Jaffe, 1993. "How High are the Giants' Shoulders: An Empirical Assessment of Knowledge Spillovers and Creative Destruction in a Model of Economic Growth," NBER Chapters,in: NBER Macroeconomics Annual 1993, Volume 8, pages 15-86 National Bureau of Economic Research, Inc.
    12. Kemfert, Claudia, 2005. "Induced technological change in a multi-regional, multi-sectoral, integrated assessment model (WIAGEM): Impact assessment of climate policy strategies," Ecological Economics, Elsevier, vol. 54(2-3), pages 293-305, August.
    13. Rachel Griffith & Stephen Redding & John Van Reenen, 2003. "R&D and Absorptive Capacity: Theory and Empirical Evidence," Scandinavian Journal of Economics, Wiley Blackwell, vol. 105(1), pages 99-118, March.
    14. Eaton, Jonathan & Kortum, Samuel, 1996. "Trade in ideas Patenting and productivity in the OECD," Journal of International Economics, Elsevier, vol. 40(3-4), pages 251-278, May.
    15. Wolfgang Keller, 1997. "Trade and Transmission of Technology," NBER Working Papers 6113, National Bureau of Economic Research, Inc.
    16. Onno Kuik & Reyer Gerlagh, 2003. "Trade Liberalization and Carbon Leakage," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 97-120.
    17. Henk Folmer & H. Landis Gabel & Shelby Gerking & Adam Rose (ed.), 2001. "Frontiers of Environmental Economics," Books, Edward Elgar Publishing, number 1929.
    18. Barbara Buchner & Carlo Carraro & Igor Cersosimo & Carmen Marchiori, 2002. "Back to Kyoto? US Participation and the Linkage between R&D and Climate Cooperation," CESifo Working Paper Series 688, CESifo Group Munich.
    19. Graeber, Bernhard & Spalding-Fecher, Randall & Gonah, Brian, 2005. "Optimising trans-national power generation and transmission investments: a Southern African example," Energy Policy, Elsevier, vol. 33(18), pages 2337-2349, December.
    20. Daron Acemoglu, 2002. "Directed Technical Change," Review of Economic Studies, Oxford University Press, vol. 69(4), pages 781-809.
    21. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    22. Streets, D.G., 2003. "Environmental benefits of electricity grid interconnections in Northeast Asia," Energy, Elsevier, vol. 28(8), pages 789-807.
    23. Rosenberg,Nathan, 1994. "Exploring the Black Box," Cambridge Books, Cambridge University Press, number 9780521459556, April.
    24. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    25. Carraro, Carlo & Siniscaico, Domenico, 1994. "Environmental policy reconsidered: The role of technological innovation," European Economic Review, Elsevier, vol. 38(3-4), pages 545-554, April.
    26. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1992. "Ivory Tower Versus Corporate Lab: An Empirical Study of Basic Research and Appropriability," NBER Working Papers 4146, National Bureau of Economic Research, Inc.
    27. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    28. Richard Kneller, 2005. "Frontier Technology, Absorptive Capacity and Distance," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(1), pages 1-23, February.
    29. Valentina Bosetti, Carlo Carraro, Marzio Galeotti, Emanuele Massetti, Massimo Tavoni, 2006. "A World induced Technical Change Hybrid Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 13-38.
    30. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    31. Michael Grubb, Carlo Carraro and John Schellnhuber, 2006. "Technological Change for Atmospheric Stabilization: Introductory Overview to the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-16.
    32. Clarke, Leon & Weyant, John & Edmonds, Jae, 2008. "On the sources of technological change: What do the models assume," Energy Economics, Elsevier, vol. 30(2), pages 409-424, March.
    33. Valentina Bosetti & Emanuele Massetti & Massimo Tavoni, 2007. "The WITCH Model. Structure, Baseline, Solutions," Working Papers 2007.10, Fondazione Eni Enrico Mattei.
    34. Eaton, Jonathan & Kortum, Samuel, 1999. "International Technology Diffusion: Theory and Measurement," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 537-570, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Climate Policy; Energy R&D; International R&D Spillovers; Stabilization;

    JEL classification:

    • H0 - Public Economics - - General
    • H2 - Public Economics - - Taxation, Subsidies, and Revenue
    • H3 - Public Economics - - Fiscal Policies and Behavior of Economic Agents

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2007.82. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (barbara racah). General contact details of provider: http://edirc.repec.org/data/feemmit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.