IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2014.18.html
   My bibliography  Save this paper

Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter?

Author

Listed:
  • Wei Jin

    (Research School of Public Economics and Policy College of Public Policy and Administration, Zhejiang University, China)

  • ZhongXiang Zhang

    (Department of Public Economics, School of Economics, Fudan University, China)

Abstract

As a useful complement to numerous innovation policy studies from a normative perspective, this paper provides a positive framework to analyze the basic economic mechanism of energy technological innovation and explains its slow pace of technological progress. We find that the capital-intensiveness of energy technology is an inhibiting factor to catalyze market size effect and slows innovations and diffusions of energy technology in the market. We also show that the substantial homogeneity of energy products leads to both a monopolistic market structure on the supply side and a weak level of positive pecuniary externality on the demand side, both dampening the incentive of innovation. On the basis of our economic analysis, we recommend that a package of policy responses to accelerating energy innovation should include 1) downsizing “heavy” assets of energy technologies; 2) deregulating monopolistic energy-supplying markets; and 3) differentiating the homogenous energy products.

Suggested Citation

  • Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter?," Working Papers 2014.18, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2014.18
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/NDL2014-018.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    3. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    4. Philippe Aghion & Nick Bloom & Richard Blundell & Rachel Griffith & Peter Howitt, 2005. "Competition and Innovation: an Inverted-U Relationship," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(2), pages 701-728.
    5. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2008. "The Clean Development Mechanism and the international diffusion of technologies: An empirical study," Energy Policy, Elsevier, vol. 36(4), pages 1273-1283, April.
    6. Leimbach, Marian & Edenhofer, Ottmar, 2007. "Technological spillovers within multi-region models: Intertemporal optimization beyond the Negishi approach," Economic Modelling, Elsevier, vol. 24(2), pages 272-294, March.
    7. Lovely, Mary & Popp, David, 2011. "Trade, technology, and the environment: Does access to technology promote environmental regulation?," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 16-35, January.
    8. Walsh, Vivien, 1984. "Invention and innovation in the chemical industry: Demand-pull or discovery-push?," Research Policy, Elsevier, vol. 13(4), pages 211-234, August.
    9. William S. Comanor, 1967. "Market Structure, Product Differentiation, and Industrial Research," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 81(4), pages 639-657.
    10. von Hippel, Eric, 1976. "The dominant role of users in the scientific instrument innovation process," Research Policy, Elsevier, vol. 5(3), pages 212-239, July.
    11. Leimbach, Marian & Baumstark, Lavinia, 2010. "The impact of capital trade and technological spillovers on climate policies," Ecological Economics, Elsevier, vol. 69(12), pages 2341-2355, October.
    12. David Popp, 2011. "International Technology Transfer, Climate Change, and the Clean Development Mechanism," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 131-152, Winter.
    13. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    14. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    15. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    16. Philippe Aghion & Richard Blundell & Rachel Griffith & Peter Howitt & Susanne Prantl, 2009. "The Effects of Entry on Incumbent Innovation and Productivity," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 20-32, February.
    17. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    18. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626, National Bureau of Economic Research, Inc.
    19. Cohen, Wesley M. & Levin, Richard C., 1989. "Empirical studies of innovation and market structure," Handbook of Industrial Organization, in: R. Schmalensee & R. Willig (ed.), Handbook of Industrial Organization, edition 1, volume 2, chapter 18, pages 1059-1107, Elsevier.
    20. Klevorick, Alvin K. & Levin, Richard C. & Nelson, Richard R. & Winter, Sidney G., 1995. "On the sources and significance of interindustry differences in technological opportunities," Research Policy, Elsevier, vol. 24(2), pages 185-205, March.
    21. Dixit, Avinash K & Stiglitz, Joseph E, 1977. "Monopolistic Competition and Optimum Product Diversity," American Economic Review, American Economic Association, vol. 67(3), pages 297-308, June.
    22. Mowery, David & Rosenberg, Nathan, 1993. "The influence of market demand upon innovation: A critical review of some recent empirical studies," Research Policy, Elsevier, vol. 22(2), pages 107-108, April.
    23. Margolis, Robert M. & Kammen, Daniel M., 1999. "Evidence of under-investment in energy R&D in the United States and the impact of Federal policy," Energy Policy, Elsevier, vol. 27(10), pages 575-584, October.
    24. Henderson, Rebecca M. & Newell, Richard G. (ed.), 2011. "Accelerating Energy Innovation," National Bureau of Economic Research Books, University of Chicago Press, number 9780226326832, July.
    25. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    26. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
    27. Karsten Neuhoff, 2005. "Large-Scale Deployment of Renewables for Electricity Generation," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 21(1), pages 88-110, Spring.
    28. Shrieves, Ronald E, 1978. "Market Structure and Innovation: A New Perspective," Journal of Industrial Economics, Wiley Blackwell, vol. 26(4), pages 329-347, June.
    29. Reyer Gerlagh & Onno Kuik, 2007. "Carbon Leakage with International Technology Spillovers," Working Papers 2007.33, Fondazione Eni Enrico Mattei.
    30. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    31. Hübler, Michael, 2011. "Technology diffusion under contraction and convergence: A CGE analysis of China," Energy Economics, Elsevier, vol. 33(1), pages 131-142, January.
    32. Kleinknecht, Alfred & Verspagen, Bart, 1990. "Demand and innovation: Schmookler re-examined," Research Policy, Elsevier, vol. 19(4), pages 387-394, August.
    33. Francisco L. Rivera-Batiz & Luis A. Rivera-Batiz, 2018. "Economic Integration and Endogenous Growth," World Scientific Book Chapters, in: Francisco L Rivera-Batiz & Luis A Rivera-Batiz (ed.), International Trade, Capital Flows and Economic Development, chapter 1, pages 3-32, World Scientific Publishing Co. Pte. Ltd..
    34. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    35. Keller, Wolfgang, 1996. "Absorptive capacity: On the creation and acquisition of technology in development," Journal of Development Economics, Elsevier, vol. 49(1), pages 199-227, April.
    36. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    37. Rebecca M. Henderson & Richard G. Newell, 2011. "Accelerating Energy Innovation: Insights from Multiple Sectors," NBER Books, National Bureau of Economic Research, Inc, number hend09-1.
    38. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    39. Marian Leimbach & Klaus Eisenack, 2009. "A Trade Algorithm for Multi-Region Models Subject to Spillover Externalities," Computational Economics, Springer;Society for Computational Economics, vol. 33(2), pages 107-130, March.
    40. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    41. Glenn C. Loury, 1979. "Market Structure and Innovation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 93(3), pages 395-410.
    42. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    43. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    44. Elena Verdolini & Marzio Galeotti, 2009. "At Home and Abroad: An Empirical Analysis of Innovation and Diffusion in Energy-Efficient Technologies," Working Papers 2009.123, Fondazione Eni Enrico Mattei.
    45. Nelson, Richard R. & Winter, Sidney G., 1993. "In search of useful theory of innovation," Research Policy, Elsevier, vol. 22(2), pages 108-108, April.
    46. Weyant, John P., 2011. "Accelerating the development and diffusion of new energy technologies: Beyond the "valley of death"," Energy Economics, Elsevier, vol. 33(4), pages 674-682, July.
    47. Nemet, Gregory F. & Kammen, Daniel M., 2007. "U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion," Energy Policy, Elsevier, vol. 35(1), pages 746-755, January.
    48. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    49. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    50. Sagar, Ambuj D. & van der Zwaan, Bob, 2006. "Technological innovation in the energy sector: R&D, deployment, and learning-by-doing," Energy Policy, Elsevier, vol. 34(17), pages 2601-2608, November.
    51. Freeman, Chris, 1994. "The Economics of Technical Change," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 18(5), pages 463-514, October.
    52. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    53. Rosenberg,Nathan, 1994. "Exploring the Black Box," Cambridge Books, Cambridge University Press, number 9780521459556, September.
    54. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    55. World Bank, 2008. "Global Economic Prospects 2008 : Technology Diffusion in the Developing World," World Bank Publications - Books, The World Bank Group, number 6335.
    56. Sagar, A. D. & Holdren, J. P., 2002. "Assessing the global energy innovation system: some key issues," Energy Policy, Elsevier, vol. 30(6), pages 465-469, May.
    57. Sutton, John, 1996. "Technology and market structure," European Economic Review, Elsevier, vol. 40(3-5), pages 511-530, April.
    58. Gibbons, Michael & Johnston, Ron, 1974. "The roles of science in technological innovation," Research Policy, Elsevier, vol. 3(3), pages 220-242, November.
    59. Kamien,Morton I. & Schwartz,Nancy L., 1982. "Market Structure and Innovation," Cambridge Books, Cambridge University Press, number 9780521293853, December.
    60. Richard G. Newell, 2011. "The Energy Innovation System: A Historical Perspective," NBER Chapters, in: Accelerating Energy Innovation: Insights from Multiple Sectors, pages 25-47, National Bureau of Economic Research, Inc.
    61. Hall, Bronwyn H. & Helmers, Christian, 2013. "Innovation and diffusion of clean/green technology: Can patent commons help?," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 33-51.
    62. Richard G. Newell, 2010. "The role of markets and policies in delivering innovation for climate change mitigation," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 26(2), pages 253-269, Summer.
    63. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    64. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    65. Lichtenberg, Frank R., 1986. "Energy prices and induced innovation," Research Policy, Elsevier, vol. 15(2), pages 67-75, April.
    66. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    67. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    68. Cowan, Robin, 1990. "Nuclear Power Reactors: A Study in Technological Lock-in," The Journal of Economic History, Cambridge University Press, vol. 50(3), pages 541-567, September.
    69. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    70. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    71. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    72. Worrell, Ernst & Biermans, Gijs, 2005. "Move over! Stock turnover, retrofit and industrial energy efficiency," Energy Policy, Elsevier, vol. 33(7), pages 949-962, May.
    73. Chris Freeman & Luc Soete, 1997. "The Economics of Industrial Innovation, 3rd Edition," MIT Press Books, The MIT Press, edition 3, volume 1, number 0262061953, December.
    74. Popp, David, 2006. "Innovation in climate policy models: Implementing lessons from the economics of R&D," Energy Economics, Elsevier, vol. 28(5-6), pages 596-609, November.
    75. Schmookler, Jacob, 1962. "Economic Sources of Inventive Activity," The Journal of Economic History, Cambridge University Press, vol. 22(1), pages 1-20, March.
    76. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    77. Edwin Mansfield, 1963. "Size of Firm, Market Structure, and Innovation," Journal of Political Economy, University of Chicago Press, vol. 71(6), pages 556-556.
    78. Watson, Jim, 2004. "Selection environments, flexibility and the success of the gas turbine," Research Policy, Elsevier, vol. 33(8), pages 1065-1080, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    2. Wei Jin, 2012. "Can China Harness Globalization to Reap Carbon Savings? Modeling International Technology Diffusion in a Multi-region Framework," CAMA Working Papers 2012-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Jin, Wei & Zhang, ZhongXiang, "undated". "Product Homogeneity, Knowledge Spillovers, and Innovation: Why Energy Sector is Perplexed by a Slow Pace of Technological Progress," Working Papers 249504, Australian National University, Centre for Climate Economics & Policy.
    4. Jin, Wei, 2015. "Can China harness globalization to reap domestic carbon savings? Modeling international technology diffusion in a multi-region framework," China Economic Review, Elsevier, vol. 34(C), pages 64-82.
    5. Jin, Wei & Zhang, ZhongXiang, 2014. "On the Mechanism of International Technology Diffusion for Energy Productivity Growth," Climate Change and Sustainable Development 172434, Fondazione Eni Enrico Mattei (FEEM).
    6. Wei Jin, 2012. "International Knowledge Spillover and Technology Externality: Why Multilateral R&D Coordination Matters for Global Climate Governance," CAMA Working Papers 2012-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    7. Wei Jin & ZhongXiang Zhang, 2017. "The tragedy of product homogeneity and knowledge non-spillovers: explaining the slow pace of energy technological progress," Annals of Operations Research, Springer, vol. 255(1), pages 639-661, August.
    8. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    9. Jin, Wei, 2016. "International technology diffusion, multilateral R&D coordination, and global climate mitigation," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 357-372.
    10. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    11. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    12. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    13. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    14. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    15. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    16. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    17. Kim, Yeong Jae & Brown, Marilyn, 2019. "Impact of domestic energy-efficiency policies on foreign innovation: The case of lighting technologies," Energy Policy, Elsevier, vol. 128(C), pages 539-552.
    18. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    19. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    20. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.

    More about this item

    Keywords

    The Economics of Technological Innovation; Market Size Effect; Love-for-variety effect; Energy Technology; IT Technology;
    All these keywords.

    JEL classification:

    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2014.18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.