IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2018-02-2.html
   My bibliography  Save this article

Planning for Investment in Energy Innovation: Developing an Analytical Tool to Explore the Impact of Knowledge Flow

Author

Listed:
  • Iman Miremadi

    (Department of Energy Engineering, Sharif University of Technology, Iran,)

  • Yadollah Saboohi

    (Department of Energy Engineering, Sharif University of Technology, Iran)

Abstract

Energy innovation is a key requirement to limit global warming and tackle climate change in the years to come. A better understanding of the knowledge flow mechanism is likely to improve allocation of resources for energy innovation. The major objective of this study is to provide an analytical tool to identify the role of investment on innovation in the process of new technologies development. To achieve this goal, a model of knowledge flow is developed and the effects of national and international knowledge spillovers are investigated. Results show that when knowledge spillovers are modelled in the Nordic countries, the required investment on domestic energy R&D decreases and the cumulative knowledge increases to 10.7 billion USD by 2030. This is a significant economic potential for technological innovation which can be considered for both energy researchers and energy planners. Finally, some important policy insights and some recommendations for further research are concluded.

Suggested Citation

  • Iman Miremadi & Yadollah Saboohi, 2018. "Planning for Investment in Energy Innovation: Developing an Analytical Tool to Explore the Impact of Knowledge Flow," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 7-19.
  • Handle: RePEc:eco:journ2:2018-02-2
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/6020/3583
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/6020/3583
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    2. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    3. Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
    4. Wong, Siang Leng & Chang, Youngho & Chia, Wai-Mun, 2013. "Energy consumption, energy R&D and real GDP in OECD countries with and without oil reserves," Energy Economics, Elsevier, vol. 40(C), pages 51-60.
    5. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    6. D׳Souza, Derrick E. & Kulkarni, Shailesh S., 2015. "A framework and model for absorptive capacity in a dynamic multi-firm environment," International Journal of Production Economics, Elsevier, vol. 167(C), pages 50-62.
    7. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
    8. Luigi Aldieri & Michele Cincera, 2009. "Geographic and technological R&D spillovers within the triad: micro evidence from US patents," The Journal of Technology Transfer, Springer, vol. 34(2), pages 196-211, April.
    9. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    10. Jin, Wei, 2016. "International technology diffusion, multilateral R&D coordination, and global climate mitigation," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 357-372.
    11. Masaaki Kotabe & Denise Dunlap-Hinkler & Ronaldo Parente & Harsh A Mishra, 2007. "Determinants of cross-national knowledge transfer and its effect on firm innovation," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 38(2), pages 259-282, March.
    12. Cruz-Castro, Laura & Sanz-Menéndez, Luis, 2016. "The effects of the economic crisis on public research: Spanish budgetary policies and research organizations," Technological Forecasting and Social Change, Elsevier, vol. 113(PB), pages 157-167.
    13. Hsin-Ning Su, 2017. "Global Interdependence of Collaborative R&D-Typology and Association of International Co-Patenting," Sustainability, MDPI, vol. 9(4), pages 1-28, April.
    14. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    15. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 577-598.
    16. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    17. Branstetter, Lee, 2006. "Is foreign direct investment a channel of knowledge spillovers? Evidence from Japan's FDI in the United States," Journal of International Economics, Elsevier, vol. 68(2), pages 325-344, March.
    18. Baccini, Leonardo & Urpelainen, Johannes, 2012. "Legislative fractionalization and partisan shifts to the left increase the volatility of public energy R&D expenditures," LSE Research Online Documents on Economics 45571, London School of Economics and Political Science, LSE Library.
    19. Wamae, Watu, 2006. "A Technology Acquisition Model: The Role of Learning and Innovation," MERIT Working Papers 2006-022, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    20. Popp, David & Newell, Richard, 2012. "Where does energy R&D come from? Examining crowding out from energy R&D," Energy Economics, Elsevier, vol. 34(4), pages 980-991.
    21. Nnaemeka Vincent Emodi & Ganzorig Shagdarsuren & Abdissa Yilma Tiky, 2015. "Influencing Factors Promoting Technological Innovation in Renewable Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 889-900.
    22. Balachandra, P. & Kristle Nathan, Hippu Salk & Reddy, B. Sudhakara, 2010. "Commercialization of sustainable energy technologies," Renewable Energy, Elsevier, vol. 35(8), pages 1842-1851.
    23. Rachel Griffith & Stephen Redding & John Van Reenen, 2003. "R&D and Absorptive Capacity: Theory and Empirical Evidence," Scandinavian Journal of Economics, Wiley Blackwell, vol. 105(1), pages 99-118, March.
    24. Miketa, Asami & Schrattenholzer, Leo, 2004. "Experiments with a methodology to model the role of R&D expenditures in energy technology learning processes; first results," Energy Policy, Elsevier, vol. 32(15), pages 1679-1692, October.
    25. Raphael Bointner & Simon Pezzutto & Wolfram Sparber, 2016. "Scenarios of public energy research and development expenditures: financing energy innovation in Europe," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 470-488, July.
    26. Effie Kesidou & Marjolein Caniëls & Henny Romijn, 2009. "Local Knowledge Spillovers and Development: An Exploration of the Software Cluster in Uruguay," Industry and Innovation, Taylor & Francis Journals, vol. 16(2), pages 247-272.
    27. Charles I. Jones & John C. Williams, 1998. "Measuring the Social Return to R&D," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1119-1135.
    28. Zuzana Smeets Kristkova & Cornelis Gardebroek & Michiel van Dijk & Hans van Meijl, 2017. "The impact of R&D on factor-augmenting technical change – an empirical assessment at the sector level," Economic Systems Research, Taylor & Francis Journals, vol. 29(3), pages 385-417, July.
    29. Paola Garrone & Lucia Piscitello & Yan Wang, 2014. "Innovation Performance and International Knowledge Spillovers: Evidence from the Renewable Energy Sector in OECD Countries," Industry and Innovation, Taylor & Francis Journals, vol. 21(7-8), pages 574-598, November.
    30. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    31. Bart Verspagen & Marjolein C.J. Cani, ls, 2001. "Barriers to knowledge spillovers and regional convergence in an evolutionary model," Journal of Evolutionary Economics, Springer, vol. 11(3), pages 307-329.
    32. Elena Verdolini & Marzio Galeotti, 2009. "At Home and Abroad: An Empirical Analysis of Innovation and Diffusion in Energy-Efficient Technologies," Working Papers 2009.123, Fondazione Eni Enrico Mattei.
    33. Akimoto, Keigo & Tomoda, Toshimasa & Fujii, Yasumasa, 2005. "Development of a mixed integer programming model for technology development strategy and its application to IGCC technologies," Energy, Elsevier, vol. 30(7), pages 1176-1191.
    34. Andrea Fracasso & Giuseppe Vittucci Marzetti, 2014. "International R&D Spillovers, Absorptive Capacity and Relative Backwardness: A Panel Smooth Transition Regression Model," International Economic Journal, Taylor & Francis Journals, vol. 28(1), pages 137-160, March.
    35. Yuen Ping Ho & Poh Kam Wong & Mun Heng Toh, 2009. "The Impact Of R&D On The Singapore Economy: An Empirical Evaluation," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 54(01), pages 1-20.
    36. Franco Malerba & Maria Mancusi & Fabio Montobbio, 2013. "Innovation, international R&D spillovers and the sectoral heterogeneity of knowledge flows," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 149(4), pages 697-722, December.
    37. Bernstein, Jeffrey I. & Nadiri, M. Ishaq, 1988. "Interindustry R&D, Rates of Return and Production in High-Tech Industries," Working Papers 88-04, C.V. Starr Center for Applied Economics, New York University.
    38. Bretschger, Lucas, 2017. "Climate policy and economic growth," Resource and Energy Economics, Elsevier, vol. 49(C), pages 1-15.
    39. Shafiei, Ehsan & Saboohi, Yadollah & Ghofrani, Mohammad B., 2009. "Optimal policy of energy innovation in developing countries: Development of solar PV in Iran," Energy Policy, Elsevier, vol. 37(3), pages 1116-1127, March.
    40. Kurth, Margaret & Keisler, Jeffrey M. & Bates, Matthew E. & Bridges, Todd S. & Summers, Jeffrey & Linkov, Igor, 2017. "A portfolio decision analysis approach to support energy research and development resource allocation," Energy Policy, Elsevier, vol. 105(C), pages 128-135.
    41. Singh, Jasjit, 2008. "Distributed R&D, cross-regional knowledge integration and quality of innovative output," Research Policy, Elsevier, vol. 37(1), pages 77-96, February.
    42. Lee, Gwanghoon, 2006. "The effectiveness of international knowledge spillover channels," European Economic Review, Elsevier, vol. 50(8), pages 2075-2088, November.
    43. Zvi Griliches, 1998. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 17-45, National Bureau of Economic Research, Inc.
    44. Baccini, Leonardo & Urpelainen, Johannes, 2012. "Legislative fractionalization and partisan shifts to the left increase the volatility of public energy R&D expenditures," Energy Policy, Elsevier, vol. 46(C), pages 49-57.
    45. Bernstein, Jeffrey I & Nadiri, M Ishaq, 1988. "Interindustry R&D Spillovers, Rates of Return, and Production in High-Tech Industries," American Economic Review, American Economic Association, vol. 78(2), pages 429-434, May.
    46. Aslani, Alireza & Naaranoja, Marja & Wong, Kau-Fui V., 2013. "Strategic analysis of diffusion of renewable energy in the Nordic countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 497-505.
    47. Garrone, Paola & Grilli, Luca, 2010. "Is there a relationship between public expenditures in energy R&D and carbon emissions per GDP? An empirical investigation," Energy Policy, Elsevier, vol. 38(10), pages 5600-5613, October.
    48. Shayegh, Soheil & Sanchez, Daniel L. & Caldeira, Ken, 2017. "Evaluating relative benefits of different types of R&D for clean energy technologies," Energy Policy, Elsevier, vol. 107(C), pages 532-538.
    49. Kobos, Peter H. & Erickson, Jon D. & Drennen, Thomas E., 2006. "Technological learning and renewable energy costs: implications for US renewable energy policy," Energy Policy, Elsevier, vol. 34(13), pages 1645-1658, September.
    50. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    51. Kim, Kyunam & Kim, Yeonbae, 2015. "Role of policy in innovation and international trade of renewable energy technology: Empirical study of solar PV and wind power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 717-727.
    52. repec:eco:journ2:2017-04-17 is not listed on IDEAS
    53. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    54. Richard Kneller, 2005. "Frontier Technology, Absorptive Capacity and Distance," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(1), pages 1-23, February.
    55. Wiesenthal, Tobias & Leduc, Guillaume & Haegeman, Karel & Schwarz, Hans-Günther, 2012. "Bottom-up estimation of industrial and public R&D investment by technology in support of policy-making: The case of selected low-carbon energy technologies," Research Policy, Elsevier, vol. 41(1), pages 116-131.
    56. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    57. Valentina Bosetti, Carlo Carraro, Marzio Galeotti, Emanuele Massetti, Massimo Tavoni, 2006. "A World induced Technical Change Hybrid Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 13-38.
    58. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    59. Roper, Stephen & Hewitt-Dundas, Nola, 2015. "Knowledge stocks, knowledge flows and innovation: Evidence from matched patents and innovation panel data," Research Policy, Elsevier, vol. 44(7), pages 1327-1340.
    60. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    61. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    62. Neil Foster & Johann Scharler & Jesus Crespo-Cuaresma, 2008. "Barriers to technology adoption, international R and D spillovers and growth," Economics Bulletin, AccessEcon, vol. 15(3), pages 1-7.
    63. Corderi, David & Cynthia Lin, C.-Y., 2011. "Measuring the social rate of return to R&D in coal, petroleum and nuclear manufacturing: A study of the OECD countries," Energy Policy, Elsevier, vol. 39(5), pages 2780-2785, May.
    64. Popp, David, 2006. "Innovation in climate policy models: Implementing lessons from the economics of R&D," Energy Economics, Elsevier, vol. 28(5-6), pages 596-609, November.
    65. Martin Meyer, 2002. "RETRACTED ARTICLE: Tracing Knowledge Flows in Innovation Systems—an Informetric Perspective on Future Research Science-based Innovation," Economic Systems Research, Taylor & Francis Journals, vol. 14(4), pages 323-344, December.
    66. repec:ebl:ecbull:v:15:y:2008:i:3:p:1-7 is not listed on IDEAS
    67. Martin Meyer, 2002. "Tracing knowledge flows in innovation systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(2), pages 193-212, June.
    68. Narula, Rajneesh & Santangelo, Grazia D., 2009. "Location, collocation and R&D alliances in the European ICT industry," Research Policy, Elsevier, vol. 38(2), pages 393-403, March.
    69. Veldman, Jasper & Gaalman, Gerard J.C., 2015. "Competitive investments in cost reducing process improvement: The role of managerial incentives and spillover learning," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 701-709.
    70. Ulrich Dewald & Bernhard Truffer, 2011. "Market Formation in Technological Innovation Systems—Diffusion of Photovoltaic Applications in Germany," Industry and Innovation, Taylor & Francis Journals, vol. 18(3), pages 285-300.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miremadi, I. & Saboohi, Y. & Arasti, M., 2019. "The influence of public R&D and knowledge spillovers on the development of renewable energy sources: The case of the Nordic countries," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 450-463.
    2. J. Restrepo-Trujillo & Ricardo Moreno-Chuquen & Francy Nelly Jim nez-Garc a, 2020. "Strategies of Expansion for Electric Power Systems Based on Hydroelectric Plants in the Context of Climate Change: Case of Analysis of Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 66-74.
    3. Khajehpour, Hossein & Miremadi, Iman & Saboohi, Yadollah & Tsatsaronis, George, 2020. "A novel approach for analyzing the effectiveness of the R&D capital for resource conservation: Comparative study on Germany and UK electricity sectors," Energy Policy, Elsevier, vol. 147(C).
    4. Valery F. Anisimov & Yuri V. Truntsevsky & Valery V. Bessel & Saltanat Yessetova, 2020. "Prospects of Development of the Oil Industry in the Global Economy and in the Regional Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 265-279.
    5. Iurii Prokazov & Vladimir Gorbanyov & Vadim Samusenkov & Irina Razinkina & Monika Chłąd, 2021. "Assessing the Flexibility of Renewable Energy Multinational Corporations," Energies, MDPI, vol. 14(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miremadi, I. & Saboohi, Y. & Arasti, M., 2019. "The influence of public R&D and knowledge spillovers on the development of renewable energy sources: The case of the Nordic countries," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 450-463.
    2. Raphael Bointner & Simon Pezzutto & Wolfram Sparber, 2016. "Scenarios of public energy research and development expenditures: financing energy innovation in Europe," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 470-488, July.
    3. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
    5. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    6. Juan Francisco De Negri & Simon Pezzutto & Sonia Gantioler & David Moser & Wolfram Sparber, 2020. "A Comprehensive Analysis of Public and Private Funding for Photovoltaics Research and Development in the European Union, Norway, and Turkey," Energies, MDPI, vol. 13(11), pages 1-23, May.
    7. Kyunam Kim & Eunnyeong Heo & Yeonbae Kim, 2017. "Dynamic Policy Impacts on a Technological-Change System of Renewable Energy: An Empirical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 205-236, February.
    8. Raphael Bointner & Simon Pezzutto & Gianluca Grilli & Wolfram Sparber, 2016. "Financing Innovations for the Renewable Energy Transition in Europe," Energies, MDPI, vol. 9(12), pages 1-16, November.
    9. Zhu, Zhishuang & Liao, Hua & Liu, Li, 2021. "The role of public energy R&D in energy conservation and transition: Experiences from IEA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Inglesi-Lotz, R., 2019. "Energy research and R&D indicators: An LMDI decomposition analysis for the IEA Big 5 in energy research," Energy Policy, Elsevier, vol. 133(C).
    11. Sung, Bongsuk & Soh, Jin Young & Park, Chun Gun, 2022. "Comparing government support, firm heterogeneity, and inter-firm spillovers for productivity enhancement: Evidence from the Korean solar energy technology industry," Energy, Elsevier, vol. 246(C).
    12. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    13. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    14. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.
    15. Gianluca ORSATTI, 2019. "Public R&D and green knowledge diffusion:\r\nEvidence from patent citation data," Cahiers du GREThA (2007-2019) 2019-17, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    16. Bongsuk Sung & Woo-Yong Song, 2017. "Does Dynamic Efficiency of Public Policy Promote Export Prformance? Evidence from Bioenergy Technology Sector," Energies, MDPI, vol. 10(12), pages 1-18, December.
    17. Enrica Cian & Valentina Bosetti & Massimo Tavoni, 2012. "Technology innovation and diffusion in “less than ideal” climate policies: An assessment with the WITCH model," Climatic Change, Springer, vol. 114(1), pages 121-143, September.
    18. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    19. Kahouli, Bassem, 2018. "The causality link between energy electricity consumption, CO2 emissions, R&D stocks and economic growth in Mediterranean countries (MCs)," Energy, Elsevier, vol. 145(C), pages 388-399.
    20. David Popp, 2015. "Using Scientific Publications to Evaluate Government R&D Spending: The Case of Energy," NBER Working Papers 21415, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Energy economics; R&D expenditure; Knowledge spillovers; Energy policy.;
    All these keywords.

    JEL classification:

    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2018-02-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.