IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i5p2780-2785.html
   My bibliography  Save this article

Measuring the social rate of return to R&D in coal, petroleum and nuclear manufacturing: A study of the OECD countries

Author

Listed:
  • Corderi, David
  • Cynthia Lin, C.-Y.

Abstract

This paper estimates the social rate of return to research and development (R&D) in the energy manufacturing industry. Our model tries to quantify the positive contribution that lagged R&D has on total factor productivity (TFP) growth in the manufacturing of coal, petroleum products and nuclear fuel for a number of OECD countries. Using a panel of data from the OECD STAN database we are able to obtain results suggesting that R&D has a positive and significant rate of return that varies for each country.

Suggested Citation

  • Corderi, David & Cynthia Lin, C.-Y., 2011. "Measuring the social rate of return to R&D in coal, petroleum and nuclear manufacturing: A study of the OECD countries," Energy Policy, Elsevier, vol. 39(5), pages 2780-2785, May.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2780-2785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(11)00140-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James D. Adams & Adam B. Jaffe, 1996. "Bounding the Effects of R&D: An Investigation Using Matched Establishment-Firm Data," RAND Journal of Economics, The RAND Corporation, vol. 27(4), pages 700-721, Winter.
    2. Rachel Griffith & Stephen Redding & John Van Reenen, 2004. "Mapping the Two Faces of R&D: Productivity Growth in a Panel of OECD Industries," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 883-895, November.
    3. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    4. Zvi Griliches, 1998. "Interindustry Technology Flows and Productivity Growth: A Reexamination," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 241-250, National Bureau of Economic Research, Inc.
    5. Nestor Terleckyj, 1980. "Direct and Indirect Effects of Industrial Research and Development on the Productivity Growth of Industries," NBER Chapters, in: New Developments in Productivity Measurement and Analysis, pages 357-386, National Bureau of Economic Research, Inc.
    6. Zvi Griliches, 1998. "Productivity, R&D, and the Data Constraint," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 347-374, National Bureau of Economic Research, Inc.
    7. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    8. Zvi Griliches, 1984. "R&D, Patents, and Productivity," NBER Books, National Bureau of Economic Research, Inc, number gril84-1.
    9. Engelbrecht, Hans-Jurgen, 1997. "International R&D spillovers, human capital and productivity in OECD economies: An empirical investigation," European Economic Review, Elsevier, vol. 41(8), pages 1479-1488, August.
    10. Charles I. Jones & John C. Williams, 1998. "Measuring the Social Return to R&D," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1119-1135.
    11. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    12. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    13. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    14. Nadiri, M.I. & Kim, S., 1996. "International R&D Spillovers, Trade and Productivity in Major OECD Countries," Working Papers 96-35, C.V. Starr Center for Applied Economics, New York University.
    15. Wolfgang Keller, 2002. "Geographic Localization of International Technology Diffusion," American Economic Review, American Economic Association, vol. 92(1), pages 120-142, March.
    16. Scherer, F M, 1982. "Inter-Industry Technology Flows and Productivity Growth," The Review of Economics and Statistics, MIT Press, vol. 64(4), pages 627-634, November.
    17. Sveikauskas, Leo, 1981. "Technological Inputs and Multifactor Productivity Growth," The Review of Economics and Statistics, MIT Press, vol. 63(2), pages 275-282, May.
    18. Zvi Griliches, 1998. "R&D and Productivity Growth at the Industry Level: Is There Still a Relationship?," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 213-240, National Bureau of Economic Research, Inc.
    19. Margolis, Robert M. & Kammen, Daniel M., 1999. "Evidence of under-investment in energy R&D in the United States and the impact of Federal policy," Energy Policy, Elsevier, vol. 27(10), pages 575-584, October.
    20. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    21. Bernard, Andrew B & Jones, Charles I, 1996. "Comparing Apples to Oranges: Productivity Convergence and Measurement across Industries and Countries," American Economic Review, American Economic Association, vol. 86(5), pages 1216-1238, December.
    22. John W. Kendrick & Beatrice N. Vaccara, 1980. "New Developments in Productivity Measurement and Analysis," NBER Books, National Bureau of Economic Research, Inc, number kend80-1.
    23. Taegi Kim & Changsuh Park, 2003. "R&D, trade, and productivity growth in korean manufacturing," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 139(3), pages 460-483, September.
    24. M. Ishaq Nadiri & Seongjun Kim, 1996. "International R&D Spillovers, Trade and Productivity in Major OECD Countries," NBER Working Papers 5801, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    2. Barron, Robert & McJeon, Haewon, 2015. "The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios," Energy Policy, Elsevier, vol. 80(C), pages 264-274.
    3. Del Bo, Chiara F., 2016. "The rate of return to investment in R&D: The case of research infrastructures," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 26-37.
    4. Inglesi-Lotz, R., 2019. "Energy research and R&D indicators: An LMDI decomposition analysis for the IEA Big 5 in energy research," Energy Policy, Elsevier, vol. 133(C).
    5. Iman Miremadi & Yadollah Saboohi, 2018. "Planning for Investment in Energy Innovation: Developing an Analytical Tool to Explore the Impact of Knowledge Flow," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 7-19.
    6. Si, Shuyang & Lyu, Mingjie & Lin Lawell, C.-Y. Cynthia & Chen, Song, 2021. "The effects of environmental policies in China on GDP, output, and profits," Energy Economics, Elsevier, vol. 94(C).
    7. Chiara F. DEL BO, 2014. "The rate of return to investment in R&D infrastructure: an overview," Departmental Working Papers 2014-11, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hall, Bronwyn H. & Mairesse, Jacques & Mohnen, Pierre, 2010. "Measuring the Returns to R&D," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1033-1082, Elsevier.
    2. Ugur, Mehmet & Trushin, Eshref & Solomon, Edna & Guidi, Francesco, 2016. "R&D and productivity in OECD firms and industries: A hierarchical meta-regression analysis," Research Policy, Elsevier, vol. 45(10), pages 2069-2086.
    3. Cameron, Gavin & Proudman, James & Redding, Stephen, 2005. "Technological convergence, R&D, trade and productivity growth," European Economic Review, Elsevier, vol. 49(3), pages 775-807, April.
    4. Raquel Ortega-Argilés, 2013. "R&D, knowledge, economic growth and the transatlantic productivity gap," Chapters, in: Frank Giarratani & Geoffrey J.D. Hewings & Philip McCann (ed.), Handbook of Industry Studies and Economic Geography, chapter 11, pages 271-302, Edward Elgar Publishing.
    5. Wolfgang Keller, 2002. "Geographic Localization of International Technology Diffusion," American Economic Review, American Economic Association, vol. 92(1), pages 120-142, March.
    6. Gong, Guan & Keller, Wolfgang, 2003. "Convergence and polarization in global income levels: a review of recent results on the role of international technology diffusion," Research Policy, Elsevier, vol. 32(6), pages 1055-1079, June.
    7. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    8. Jones, Charles I & Williams, John C, 2000. "Too Much of a Good Thing? The Economics of Investment in R&D," Journal of Economic Growth, Springer, vol. 5(1), pages 65-85, March.
    9. Ana Lara GÓMEZ, 2015. "Technological Spillovers of Research Infrastructures," Departmental Working Papers 2015-18, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    10. Belderbos, René & Mohnen, Pierre, 2020. "Inter-sectoral and international R&D spillovers," MERIT Working Papers 2020-047, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    11. López-Pueyo, Carmen & Barcenilla-Visús, Sara & Sanaú, Jaime, 2008. "International R&D spillovers and manufacturing productivity: A panel data analysis," Structural Change and Economic Dynamics, Elsevier, vol. 19(2), pages 152-172, June.
    12. Henrik Braconier & Fredrik Sjöholm, 1998. "National and international spillovers from R&D: Comparing a neoclassical and an endogenous growth approach," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 134(4), pages 638-663, December.
    13. Rachel Griffith & Stephen Redding & John Van Reenen, 2004. "Mapping the Two Faces of R&D: Productivity Growth in a Panel of OECD Industries," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 883-895, November.
    14. Katherine Wynn & Mingji Liu & Jasmine Cohen, 2022. "Quantifying the economy‐wide returns to innovation for Australia," Australian Economic Papers, Wiley Blackwell, vol. 61(3), pages 591-614, September.
    15. Charles I. Jones & John C. Williams, 1998. "Measuring the Social Return to R&D," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1119-1135.
    16. Giovanni Peri, 2002. "Knowledge Flows and Knowledge Externalities," CESifo Working Paper Series 765, CESifo.
    17. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    18. Nishioka, Shuichiro & Ripoll, Marla, 2012. "Productivity, trade and the R&D content of intermediate inputs," European Economic Review, Elsevier, vol. 56(8), pages 1573-1592.
    19. Jakob B. Madsen & Md. Rabiul Islam & James B. Ang, 2010. "Catching up to the technology frontier: the dichotomy between innovation and imitation," Canadian Journal of Economics, Canadian Economics Association, vol. 43(4), pages 1389-1411, November.
    20. Robert Wieser, 2005. "Research And Development Productivity And Spillovers: Empirical Evidence At The Firm Level," Journal of Economic Surveys, Wiley Blackwell, vol. 19(4), pages 587-621, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2780-2785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.