IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02971680.html
   My bibliography  Save this paper

Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies

Author

Listed:
  • Clement Bonnet

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique, Chaire économie du climat - Chaire économie du climat)

Abstract

No abstract is available for this item.

Suggested Citation

  • Clement Bonnet, 2020. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers hal-02971680, HAL.
  • Handle: RePEc:hal:wpaper:hal-02971680
    Note: View the original document on HAL open archive server: https://hal.science/hal-02971680
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02971680/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Popp, David & Santen, Nidhi & Fisher-Vanden, Karen & Webster, Mort, 2013. "Technology variation vs. R&D uncertainty: What matters most for energy patent success?," Resource and Energy Economics, Elsevier, vol. 35(4), pages 505-533.
    2. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    3. Taylor, Margaret, 2008. "Beyond technology-push and demand-pull: Lessons from California's solar policy," Energy Economics, Elsevier, vol. 30(6), pages 2829-2854, November.
    4. Laleman, Ruben & Albrecht, Johan, 2014. "Comparing push and pull measures for PV and wind in Europe," Renewable Energy, Elsevier, vol. 61(C), pages 33-37.
    5. Dechezlepretre, Antoine & Glachant, Matthieu & Hascic, Ivan & Johnstone, Nick & Meniere, Yann, 2009. "Invention and Transfer of Climate Change Mitigation Technologies on a Global Scale: A Study Drawing on Patent Data," Sustainable Development Papers 54361, Fondazione Eni Enrico Mattei (FEEM).
    6. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 577-598.
    7. Horbach, Jens & Rammer, Christian & Rennings, Klaus, 2012. "Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull," Ecological Economics, Elsevier, vol. 78(C), pages 112-122.
    8. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
    9. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    10. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    11. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    12. repec:fth:harver:1473 is not listed on IDEAS
    13. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    14. Schankerman, Mark & Pakes, Ariel, 1986. "Estimates of the Value of Patent Rights in European Countries during the Post-1950 Period," Economic Journal, Royal Economic Society, vol. 96(384), pages 1052-1076, December.
    15. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    16. Jean O. Lanjouw & Mark Schankerman, 1997. "Stylized Facts of Patent Litigation: Value, Scope and Ownership," NBER Working Papers 6297, National Bureau of Economic Research, Inc.
    17. Johnson, Daniel K N & Popp, David, 2003. "Forced Out of the Closet: The Impact of the American Inventors Protection Act on the Timing of Patent Disclosure," RAND Journal of Economics, The RAND Corporation, vol. 34(1), pages 96-112, Spring.
    18. Kemp, René & Pontoglio, Serena, 2011. "The innovation effects of environmental policy instruments — A typical case of the blind men and the elephant?," Ecological Economics, Elsevier, vol. 72(C), pages 28-36.
    19. Tooraj Jamasb, 2007. "Technical Change Theory and Learning Curves: Patterns of Progress in Electricity Generation Technologies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 51-72.
    20. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    21. Schankerman, Mark & Lanjouw, Jean, 2001. "Enforcing Intellectual Property Rights," CEPR Discussion Papers 3093, C.E.P.R. Discussion Papers.
    22. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    23. Kobos, Peter H. & Erickson, Jon D. & Drennen, Thomas E., 2006. "Technological learning and renewable energy costs: implications for US renewable energy policy," Energy Policy, Elsevier, vol. 34(13), pages 1645-1658, September.
    24. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    25. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
    26. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    27. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    28. Scherer, F. M. & Harhoff, Dietmar, 2000. "Technology policy for a world of skew-distributed outcomes," Research Policy, Elsevier, vol. 29(4-5), pages 559-566, April.
    29. Pierre Régibeau & Katharine Rockett, 2010. "Innovation Cycles And Learning At The Patent Office: Does The Early Patent Get The Delay?," Journal of Industrial Economics, Wiley Blackwell, vol. 58(2), pages 222-246, June.
    30. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    31. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    32. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
    33. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
    34. Lanzi, Elisa & Verdolini, Elena & Haščič, Ivan, 2011. "Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends," Energy Policy, Elsevier, vol. 39(11), pages 7000-7014.
    35. Noailly, Joëlle & Smeets, Roger, 2015. "Directing technical change from fossil-fuel to renewable energy innovation: An application using firm-level patent data," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 15-37.
    36. Gaétan de Rassenfosse & Hélène Dernis & Geert Boedt, 2014. "An Introduction to the Patstat Database with Example Queries," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 47(3), pages 395-408, September.
    37. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    38. Ivan Hašèiè & Nick Johnstone & Margarita Kalamova, 2009. "Environmental Policy Flexibility, Search and Innovation," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(5), pages 426-441, December.
    39. Ivan Haščič & Mauro Migotto, 2015. "Measuring environmental innovation using patent data," OECD Environment Working Papers 89, OECD Publishing.
    40. Joshua Lerner, 1994. "The Importance of Patent Scope: An Empirical Analysis," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 319-333, Summer.
    41. Yann Ménière & Antoine Dechezleprêtre & Matthieu Glachant & Ivan Hascic & N. Johnstone, 2011. "Invention and transfer of climate change mitigation technologies: a study drawing on patent data," Post-Print hal-00869795, HAL.
    42. Donald Rubin & Dorothy Thayer, 1982. "EM algorithms for ML factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 47(1), pages 69-76, March.
    43. Dietmar Harhoff & Stefan Wagner, 2009. "The Duration of Patent Examination at the European Patent Office," Management Science, INFORMS, vol. 55(12), pages 1969-1984, December.
    44. Georg Zachmann & Amma Serwaah & Michele Peruzzi, 2014. "When and how to support renewables? Letting the data speak," Working Papers 811, Bruegel.
    45. Albrecht, Johan & Laleman, Ruben & Vulsteke, Elien, 2015. "Balancing demand-pull and supply-push measures to support renewable electricity in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 267-277.
    46. del Río, Pablo & Mir-Artigues, Pere, 2012. "Support for solar PV deployment in Spain: Some policy lessons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5557-5566.
    47. Nikolaos Kouvaritakis & Antonio Soria & Stephane Isoard, 2000. "Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 104-115.
    48. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    49. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    50. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    51. Georg Zachmann & Amma Serwaah & Michele Perruzi, "undated". "When & how to support renewables? Letting the data speak," SIMPATIC Working Papers 951, Bruegel.
    52. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    53. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    54. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    55. Mariagrazia Squicciarini & Hélène Dernis & Chiara Criscuolo, 2013. "Measuring Patent Quality: Indicators of Technological and Economic Value," OECD Science, Technology and Industry Working Papers 2013/3, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clément Bonnet, 2016. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," EconomiX Working Papers 2016-37, University of Paris Nanterre, EconomiX.
    2. Clément Bonnet, 2017. "Measuring Inventive Performance with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers 1709, Chaire Economie du climat.
    3. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    4. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    5. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
    6. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    7. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    8. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    9. Gianluca ORSATTI, 2019. "Public R&D and green knowledge diffusion:\r\nEvidence from patent citation data," Cahiers du GREThA (2007-2019) 2019-17, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    10. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    11. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    12. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    13. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    14. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    15. Antoine Dechezleprêtre & Yann Ménière & Myra Mohnen, 2017. "International patent families: from application strategies to statistical indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 793-828, May.
    16. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    17. Patricia Laurens & Christian Bas & Antoine Schoen & Stéphane Lhuillery, 2016. "Technological contribution of MNEs to the growth of energy-greentech sector in the early post-Kyoto period," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(2), pages 169-191, April.
    18. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    19. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    20. Geoffroy G Dolphin & Michael G Pollitt, 2020. "Identifying innovative actors in the Electricity Supply Industry using machine learning: an application to UK patent data," Working Papers EPRG2004, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02971680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.