IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Technology Variation vs. R&D Uncertainty: What Matters Most for Energy Patent Success?

  • David Popp
  • Nidhi Santen
  • Karen Fisher-Vanden
  • Mort Webster
Registered author(s):

    R&D is an uncertain activity with highly skewed outcomes. Nonetheless, most recent empirical studies and modeling estimates of the potential of technological change focus on the average returns to research and development (R&D) for a composite technology and contain little or no information about the distribution of returns to R&D--which could be important for capturing the range of costs associated with climate change mitigation policies--by individual technologies. Through an empirical study of patent citation data, this paper adds to the literature on returns to energy R&D by focusing on the behavior of the most successful innovations for six energy technologies, allowing us to determine whether uncertainty or differences in technologies matter most for success. We highlight two key results. First, we compare the results from an aggregate analysis of six energy technologies to technology-by-technology results. Our results show that existing work that assumes diminishing returns but assumes one generic technology is too simplistic and misses important differences between more successful and less successful technologies. Second, we use quantile regression techniques to learn more about patents that have a high positive error term in our regressions - that is, patents that receive many more citations than predicted based on observable characteristics. We find that differences across technologies, rather than differences across quantiles within technologies, are more important. The value of successful technologies persists longer than those of less successful technologies, providing evidence that success is the culmination of several advances building upon one another, rather than resulting from one single breakthrough. Diminishing returns to research efforts appear most problematic during rapid increases of research investment, such as experienced by solar energy in the 1970s.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by National Bureau of Economic Research, Inc in its series NBER Working Papers with number 17792.

    in new window

    Date of creation: Jan 2012
    Date of revision:
    Publication status: published as “Technology Variation vs. R&D Uncertainty: What Matters Most for Energy Patent Success?” Resources and Energy Economics, November 2013, 35(4), 505-533 (with Nidhi Santen, Karen Fisher-Vanden and Mort Webster).
    Handle: RePEc:nbr:nberwo:17792
    Note: EEE PR
    Contact details of provider: Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
    Phone: 617-868-3900
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Miketa, Asami & Schrattenholzer, Leo, 2004. "Experiments with a methodology to model the role of R&D expenditures in energy technology learning processes; first results," Energy Policy, Elsevier, vol. 32(15), pages 1679-1692, October.
    2. Kerr, Suzi & Newell, Richard, 2001. "Policy-Induced Technology Adoption: Evidence from the U.S. Lead Phasedown," Discussion Papers dp-01-14, Resources For the Future.
    3. Griliches, Zvi, 1990. "Patent Statistics as Economic Indicators: A Survey," Journal of Economic Literature, American Economic Association, vol. 28(4), pages 1661-1707, December.
    4. repec:cup:cbooks:9780521845731 is not listed on IDEAS
    5. Valentina Bosetti & Massimo Tavoni, 2007. "Uncertain R&D, Backstop Technology and GHGs Stabilization," Working Papers 2007.6, Fondazione Eni Enrico Mattei.
    6. Jose A. F. Machado & J. M. C. Santos Silva, 2002. "Quantiles for counts," CeMMAP working papers CWP22/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Alfonso Miranda, 2006. "QCOUNT: Stata program to fit quantile regression models for count data," Statistical Software Components S456714, Boston College Department of Economics, revised 08 Aug 2007.
    8. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    9. David Popp, 2006. "They Don'T Invent Them Like They Used To: An Examination Of Energy Patent Citations Over Time," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(8), pages 753-776.
    10. Pakes, Ariel S, 1986. "Patents as Options: Some Estimates of the Value of Holding European Patent Stocks," Econometrica, Econometric Society, vol. 54(4), pages 755-84, July.
    11. Blanford, Geoffrey J., 2009. "R&D investment strategy for climate change," Energy Economics, Elsevier, vol. 31(Supplemen), pages S27-S36.
    12. Alfonso Miranda, 2008. "Planned fertility and family background: a quantile regression for counts analysis," Journal of Population Economics, Springer, vol. 21(1), pages 67-81, January.
    13. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    14. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    15. Baker, Erin & Adu-Bonnah, Kwame, 2008. "Investment in risky R&D programs in the face of climate uncertainty," Energy Economics, Elsevier, vol. 30(2), pages 465-486, March.
    16. Malte Schwoon & Richard S.J. Tol, 2006. "Optimal CO2-abatement with Socio-economic Inertia and Induced Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 25-60.
    17. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, 04.
    18. repec:cup:cbooks:9780521608275 is not listed on IDEAS
    19. Valentina Bosetti, Carlo Carraro, Marzio Galeotti, Emanuele Massetti, Massimo Tavoni, 2006. "A World induced Technical Change Hybrid Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 13-38.
    20. Sabine Messner, 1997. "Endogenized technological learning in an energy systems model," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 291-313.
    21. repec:fth:harver:1473 is not listed on IDEAS
    22. Jaffe, Adam B & Fogarty, Michael S & Banks, Bruce A, 1998. "Evidence from Patents and Patent Citations on the Impact of NASA and Other Federal Labs on Commercial Innovation," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 183-205, June.
    23. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    24. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
    25. Otto, Vincent M. & Löschel, Andreas & Reilly, John, 2008. "Directed technical change and differentiation of climate policy," Energy Economics, Elsevier, vol. 30(6), pages 2855-2878, November.
    26. Bye, Brita & Jacobsen, Karl, 2011. "Restricted carbon emissions and directed R&D support; an applied general equilibrium analysis," Energy Economics, Elsevier, vol. 33(3), pages 543-555, May.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:17792. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.