IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Assessments of ‘Greenhouse Insurance’: A Methodological Review

  • Takanobu Kosugi

    ()

No abstract is available for this item.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1007/s10690-009-9111-7
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Asia-Pacific Financial Markets.

Volume (Year): 17 (2010)
Issue (Month): 4 (December)
Pages: 345-363

as
in new window

Handle: RePEc:kap:apfinm:v:17:y:2010:i:4:p:345-363
Contact details of provider: Web page: http://springerlink.metapress.com/link.asp?id=102851

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. William D. Nordhaus & David Popp, 1996. "What is the Value of Scientific Knowledge? An Application to Global Warming Using the PRICE Model," Cowles Foundation Discussion Papers 1117, Cowles Foundation for Research in Economics, Yale University.
  2. Gollier & Jullien & Treich, 2000. "Scientific progress and irreversibility : an economic interpretation of the Precautionary principle," Working Papers 156240, Institut National de la Recherche Agronomique, France.
  3. Baker, Erin & Shittu, Ekundayo, 2006. "Profit-maximizing R&D in response to a random carbon tax," Resource and Energy Economics, Elsevier, vol. 28(2), pages 160-180, May.
  4. Buonanno, Paolo & Carraro, Carlo & Castelnuovo, Efrem & Galeotti, Marzio, 2000. "Emission Trading Restrictions with Endogenous Technological Change," CEPR Discussion Papers 2514, C.E.P.R. Discussion Papers.
  5. Pindyck, Robert S., 2000. "Irreversibilities and the timing of environmental policy," Resource and Energy Economics, Elsevier, vol. 22(3), pages 233-259, July.
  6. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
  7. Watanabe, Chihiro, 1995. "Identification of the role of renewable energy," Renewable Energy, Elsevier, vol. 6(3), pages 237-274.
  8. Ansar, Jasmin & Sparks, Roger, 2009. "The experience curve, option value, and the energy paradox," Energy Policy, Elsevier, vol. 37(3), pages 1012-1020, March.
  9. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
  10. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
  11. Sabine Messner, 1997. "Endogenized technological learning in an energy systems model," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 291-313.
  12. Valentina Bosetti & Laurent Drouet, 2005. "Accounting for Uncertainty Affecting Technical Change in an Economic-Climate Model," Working Papers 2005.147, Fondazione Eni Enrico Mattei.
  13. Noah Williams, 2003. "Small Noise Asymptotics for a Stochastic Growth Model," Computing in Economics and Finance 2003 262, Society for Computational Economics.
  14. Gjerde, Jon & Grepperud, Sverre & Kverndokk, Snorre, 1999. "Optimal climate policy under the possibility of a catastrophe," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 289-317, August.
  15. Kelly, David L. & Kolstad, Charles D., 1999. "Bayesian learning, growth, and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 491-518, February.
  16. Gritsevskyi, Andrii & Nakicenovi, Nebojsa, 2000. "Modeling uncertainty of induced technological change," Energy Policy, Elsevier, vol. 28(13), pages 907-921, November.
  17. Bosetti, Valentina & Tavoni, Massimo, 2009. "Uncertain R&D, backstop technology and GHGs stabilization," Energy Economics, Elsevier, vol. 31(Supplemen), pages S18-S26.
  18. Baranzini, Andrea & Chesney, Marc & Morisset, Jacques, 2003. "The impact of possible climate catastrophes on global warming policy," Energy Policy, Elsevier, vol. 31(8), pages 691-701, June.
  19. Alan Manne & Richard Richels, 1992. "Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits," MIT Press Books, The MIT Press, edition 1, volume 1, number 026213280x, June.
  20. Geoffrey Heal & Bengt Kriström, 2002. "Uncertainty and Climate Change," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 22(1), pages 3-39, June.
  21. Birge, John R. & Rosa, Charles H., 1995. "Modeling investment uncertainty in the costs of global CO2 emission policy," European Journal of Operational Research, Elsevier, vol. 83(3), pages 466-488, June.
  22. Edenhofer, Ottmar & Bauer, Nico & Kriegler, Elmar, 2005. "The impact of technological change on climate protection and welfare: Insights from the model MIND," Ecological Economics, Elsevier, vol. 54(2-3), pages 277-292, August.
  23. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
  24. Valentina Bosetti & David Tomberlin, 2004. "Fondazione Eni Enrico Mattei," Working Papers 2004.102, Fondazione Eni Enrico Mattei.
  25. Clarke, Harry R. & Reed, William J., 1994. "Consumption/pollution tradeoffs in an environment vulnerable to pollution-related catastrophic collapse," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 991-1010, September.
  26. Pindyck, Robert S., 2002. "Optimal timing problems in environmental economics," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1677-1697, August.
  27. Baker, Erin & Adu-Bonnah, Kwame, 2008. "Investment in risky R&D programs in the face of climate uncertainty," Energy Economics, Elsevier, vol. 30(2), pages 465-486, March.
  28. Baker, Erin & Shittu, Ekundayo, 2008. "Uncertainty and endogenous technical change in climate policy models," Energy Economics, Elsevier, vol. 30(6), pages 2817-2828, November.
  29. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
  30. Terry Barker, Haoran Pan, Jonathan Kohler, Rachel Warren, and Sarah Winne, 2006. "Decarbonizing the Global Economy with Induced Technological Change: Scenarios to 2100 using E3MG," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 241-258.
  31. Naevdal, Eric & Oppenheimer, Michael, 2007. "The economics of the thermohaline circulation--A problem with multiple thresholds of unknown locations," Resource and Energy Economics, Elsevier, vol. 29(4), pages 262-283, November.
  32. Baker, Erin, 2005. "Uncertainty and learning in a strategic environment: global climate change," Resource and Energy Economics, Elsevier, vol. 27(1), pages 19-40, January.
  33. Miketa, Asami & Schrattenholzer, Leo, 2004. "Experiments with a methodology to model the role of R&D expenditures in energy technology learning processes; first results," Energy Policy, Elsevier, vol. 32(15), pages 1679-1692, October.
  34. Jana Kremer & Giovanni Lombardo & Leopold von Thadden & Thomas Werner, 2006. "Dynamic Stochastic General Equilibrium Models as a Tool for Policy Analysis," CESifo Economic Studies, CESifo, vol. 52(4), pages 640-665, December.
  35. Messner, S. & Golodnikov, A. & Gritsevskii, A., 1996. "A stochastic version of the dynamic linear programming model MESSAGE III," Energy, Elsevier, vol. 21(9), pages 775-784.
  36. Minh Ha-Duong & Michael Grubb & Jean-Charles Hourcade, 1997. "Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement," Post-Print halshs-00002452, HAL.
  37. Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom & Yang, Ming, 2007. "Investment risks under uncertain climate change policy," Energy Policy, Elsevier, vol. 35(11), pages 5766-5773, November.
  38. Olson, Lars J. & Roy, Santanu, 2005. "Theory of Stochastic Optimal Economic Growth," Working Papers 28601, University of Maryland, Department of Agricultural and Resource Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:17:y:2010:i:4:p:345-363. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.