IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v23y1999i4p491-518.html
   My bibliography  Save this article

Bayesian learning, growth, and pollution

Author

Listed:
  • Kelly, David L.
  • Kolstad, Charles D.

Abstract

No abstract is available for this item.

Suggested Citation

  • Kelly, David L. & Kolstad, Charles D., 1999. "Bayesian learning, growth, and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 491-518, February.
  • Handle: RePEc:eee:dyncon:v:23:y:1999:i:4:p:491-518
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(98)00034-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kolstad, Charles D., 1996. "Learning and Stock Effects in Environmental Regulation: The Case of Greenhouse Gas Emissions," Journal of Environmental Economics and Management, Elsevier, vol. 31(1), pages 1-18, July.
    2. Taylor, John B & Uhlig, Harald, 1990. "Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 1-17, January.
    3. Tauchen, George, 1990. "Solving the Stochastic Growth Model by Using Quadrature Methods and Value-Function Iterations," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 49-51, January.
    4. Kelly, David L. & Kolstad, Charles D., 2001. "Malthus and Climate Change: Betting on a Stable Population," Journal of Environmental Economics and Management, Elsevier, vol. 41(2), pages 135-161, March.
    5. Evans, George W & Ramey, Garey, 1992. "Expectation Calculation and Macroeconomic Dynamics," American Economic Review, American Economic Association, vol. 82(1), pages 207-224, March.
    6. Edmonds Jae & Reilly John, 1983. "Global Energy and C02 to the Year 2050," The Energy Journal, , vol. 4(3), pages 21-48, July.
    7. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    8. Yaakov Bar-Shalom & Edison Tse, 1976. "Caution, Probing, and the Value of Information in the Control of Uncertain Systems," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 3, pages 323-337, National Bureau of Economic Research, Inc.
    9. Balvers, Ronald J & Cosimano, Thomas F, 1990. "Actively Learning about Demand and the Dynamics of Price Adjustment," Economic Journal, Royal Economic Society, vol. 100(402), pages 882-898, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Sirakaya & Stephen Turnovsky & M. Alemdar, 2006. "Feedback Approximation of the Stochastic Growth Model by Genetic Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 185-206, May.
    2. Karp, Larry & Zhang, Jiangfeng, 2001. "Bayesian Learning and the Regulation of Greenhouse Gas Emissions," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2fr0783c, Department of Agricultural & Resource Economics, UC Berkeley.
    3. Peter Woehrmann & Willi Semmler & Martin Lettau, "undated". "Nonparametric Estimation of the Time-varying Sharpe Ratio in Dynamic Asset Pricing Models," IEW - Working Papers 225, Institute for Empirical Research in Economics - University of Zurich.
    4. Sanjiv Ranjan Das & Rangarajan K. Sundaram, 2002. "An approximation algorithm for optimal consumption/investment problems," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 11(2), pages 55-69, April.
    5. Duffy, John & McNelis, Paul D., 2001. "Approximating and simulating the stochastic growth model: Parameterized expectations, neural networks, and the genetic algorithm," Journal of Economic Dynamics and Control, Elsevier, vol. 25(9), pages 1273-1303, September.
    6. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    7. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    8. Karen Kopecky & Richard Suen, 2010. "Finite State Markov-chain Approximations to Highly Persistent Processes," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(3), pages 701-714, July.
    9. Posch, Olaf & Trimborn, Timo, 2013. "Numerical solution of dynamic equilibrium models under Poisson uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2602-2622.
    10. Guerrieri, Luca & Iacoviello, Matteo, 2015. "OccBin: A toolkit for solving dynamic models with occasionally binding constraints easily," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 22-38.
    11. Lontzek, Thomas S. & Narita, Daiju, 2009. "The effect of uncertainty on decision making about climate change mitigation: a numerical approach of stochastic control," Kiel Working Papers 1539, Kiel Institute for the World Economy (IfW Kiel).
    12. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2014. "Lower Bounds on Approximation Errors: Testing the Hypothesis That a Numerical Solution Is Accurate?," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-06, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    13. Wilfredo Leiva Maldonado & Benar Fux Svaiter, 2001. "On the accuracy of the estimated policy function using the Bellman contraction method," Economics Bulletin, AccessEcon, vol. 3(15), pages 1-8.
    14. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    15. Kavuncu, Y. Okan & Knabb, Shawn D., 2005. "Stabilizing greenhouse gas emissions: Assessing the intergenerational costs and benefits of the Kyoto Protocol," Energy Economics, Elsevier, vol. 27(3), pages 369-386, May.
    16. Francisco Blasques, 2014. "Transformed Polynomials For Nonlinear Autoregressive Models Of The Conditional Mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 218-238, May.
    17. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.
    18. José Cao-Alvira, 2010. "Finite Elements in the Presence of Occasionally Binding Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 35(4), pages 355-370, April.
    19. Akdeniz, Levent & Dechert, W. Davis, 1997. "Do CAPM results hold in a dynamic economy? A numerical analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 981-1003, June.
    20. Francisco (F.) Blasques & Marc Nientker, 2019. "Transformed Perturbation Solutions for Dynamic Stochastic General Equilibrium Models," Tinbergen Institute Discussion Papers 19-012/III, Tinbergen Institute, revised 09 Feb 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:23:y:1999:i:4:p:491-518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.