IDEAS home Printed from https://ideas.repec.org/a/red/issued/09-115.html
   My bibliography  Save this article

Finite State Markov-chain Approximations to Highly Persistent Processes

Author

Listed:
  • Karen Kopecky

    (University of Western Ontario)

  • Richard Suen

    (University of California, Riverside)

Abstract

The Rouwenhorst method of approximating stationary AR(1) processes has been overlooked by much of the literature despite having many desirable properties unmatched by other methods. In particular, we prove that it can match the conditional and unconditional mean and variance, and the first-order autocorrelation of any stationary AR(1) process. These properties make the Rouwenhorst method more reliable than others in approximating highly persistent processes and generating accurate model solutions. To illustrate this, we compare the performances of the Rouwenhorst method and four others in solving the stochastic growth model and an income fluctuation problem. We find that (i) the choice of approximation method can have a large impact on the computed model solutions, and (ii) the Rouwenhorst method is more robust than others with respect to variation in the persistence of the process, the number of points used in the discrete approximation and the procedure used to generate model statistics. (Copyright: Elsevier)

Suggested Citation

  • Karen Kopecky & Richard Suen, 2010. "Finite State Markov-chain Approximations to Highly Persistent Processes," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(3), pages 701-714, July.
  • Handle: RePEc:red:issued:09-115
    DOI: 10.1016/j.red.2010.02.002
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1016/j.red.2010.02.002
    Download Restriction: Access to full texts is restricted to ScienceDirect subscribers and institutional members. See http://www.sciencedirect.com/ for details.

    File URL: https://libkey.io/10.1016/j.red.2010.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tauchen, George, 1990. "Solving the Stochastic Growth Model by Using Quadrature Methods and Value-Function Iterations," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 49-51, January.
    2. Jerome Adda & Russell W. Cooper, 2003. "Dynamic Economics: Quantitative Methods and Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012014, December.
    3. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    4. Galindev, Ragchaasuren & Lkhagvasuren, Damba, 2010. "Discretization of highly persistent correlated AR(1) shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1260-1276, July.
    5. Karen Kopecky & Richard Suen, 2010. "Finite State Markov-chain Approximations to Highly Persistent Processes," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(3), pages 701-714, July.
    6. Craig Burnside, 1998. "Discrete State-Space Methods for the Study of Dynamic Economies," QM&RBC Codes 125, Quantitative Macroeconomics & Real Business Cycles.
    7. Taylor, John B & Uhlig, Harald, 1990. "Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 1-17, January.
    8. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    9. King, Robert G. & Rebelo, Sergio T., 1999. "Resuscitating real business cycles," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 14, pages 927-1007, Elsevier.
    10. Marimon, Ramon & Scott, Andrew (ed.), 1999. "Computational Methods for the Study of Dynamic Economies," OUP Catalogue, Oxford University Press, number 9780198294979, Decembrie.
    11. Tauchen, George & Hussey, Robert, 1991. "Quadrature-Based Methods for Obtaining Approximate Solutions to Nonlinear Asset Pricing Models," Econometrica, Econometric Society, vol. 59(2), pages 371-396, March.
    12. Flodén, Martin, 2008. "A note on the accuracy of Markov-chain approximations to highly persistent AR(1) processes," Economics Letters, Elsevier, vol. 99(3), pages 516-520, June.
    13. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    14. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolay Gospodinov & Damba Lkhagvasuren, 2014. "A Moment‐Matching Method For Approximating Vector Autoregressive Processes By Finite‐State Markov Chains," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 843-859, August.
    2. Giulio Fella & Giovanni Gallipoli & Jutong Pan, 2019. "Markov-Chain Approximations for Life-Cycle Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 34, pages 183-201, October.
    3. Gordon, Grey, 2021. "Efficient VAR discretization," Economics Letters, Elsevier, vol. 204(C).
    4. Jordan Roulleau-Pasdeloup, 2022. "Analyzing Linear DSGE models: the Method of Undetermined Markov States," Papers 2209.05081, arXiv.org, revised Feb 2023.
    5. Takefumi Yamazaki, 2018. "Accuracy and speed of the solution methods for sovereign default models: The stable performance of the Tauchen method and cubic spline interpolation," Public Policy Review, Policy Research Institute, Ministry of Finance Japan, vol. 14(4), pages 641-662, July.
    6. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    7. Galindev, Ragchaasuren & Lkhagvasuren, Damba, 2010. "Discretization of highly persistent correlated AR(1) shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1260-1276, July.
    8. Dorofeenko, Victor & Lee, Gabriel S. & Salyer, Kevin D., 2010. "A new algorithm for solving dynamic stochastic macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 388-403, March.
    9. Damba Lkhagvasuren & Erdenebat Bataa, 2023. "Finite-State Markov Chains with Flexible Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 611-644, February.
    10. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    11. Alexis Akira Toda, 2021. "Data-Based Automatic Discretization of Nonparametric Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1217-1235, April.
    12. Leland E. Farmer, 2021. "The discretization filter: A simple way to estimate nonlinear state space models," Quantitative Economics, Econometric Society, vol. 12(1), pages 41-76, January.
    13. de Castro, Luciano & Galvao, Antonio F. & Muchon, Andre, 2023. "Numerical Solution of Dynamic Quantile Models," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    14. Gospodinov, Nikolay & Lkhagvasuren, Damba, 2011. "A new method for approximating vector autoregressive processes by finite-state Markov chains," MPRA Paper 33827, University Library of Munich, Germany.
    15. Robert Kirkby, 2023. "Quantitative Macroeconomics: Lessons Learned from Fourteen Replications," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 875-896, February.
    16. Laczó, Sarolta & Rossi, Raffaele, 2020. "Time-consistent consumption taxation," Journal of Monetary Economics, Elsevier, vol. 114(C), pages 194-220.
    17. Carlo A. Favero, 2007. "Model Evaluation in Macroeconometrics: from early empirical macroeconomic models to DSGE models," Working Papers 327, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    18. Matthijs Lof, 2014. "GMM Estimation with Non-causal Instruments under Rational Expectations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 279-286, April.
    19. Andrew Foerster & Juan F. Rubio‐Ramírez & Daniel F. Waggoner & Tao Zha, 2016. "Perturbation methods for Markov‐switching dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 7(2), pages 637-669, July.
    20. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt2tc0m67t, Department of Economics, UC San Diego.

    More about this item

    Keywords

    Numerical methods; Finite state approximations;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:red:issued:09-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Zimmermann (email available below). General contact details of provider: https://edirc.repec.org/data/sedddea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.