IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v28y2000i13p907-921.html
   My bibliography  Save this article

Modeling uncertainty of induced technological change

Author

Listed:
  • Gritsevskyi, Andrii
  • Nakicenovi, Nebojsa

Abstract

No abstract is available for this item.

Suggested Citation

  • Gritsevskyi, Andrii & Nakicenovi, Nebojsa, 2000. "Modeling uncertainty of induced technological change," Energy Policy, Elsevier, vol. 28(13), pages 907-921, November.
  • Handle: RePEc:eee:enepol:v:28:y:2000:i:13:p:907-921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(00)00082-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Messner, S. & Golodnikov, A. & Gritsevskii, A., 1996. "A stochastic version of the dynamic linear programming model MESSAGE III," Energy, Elsevier, vol. 21(9), pages 775-784.
    2. Robalino, David & Lempert, Robert, 2000. "Carrots and sticks for new technology: Abating greenhouse gas emissions in a heterogeneous and uncertain world," MPRA Paper 12002, University Library of Munich, Germany.
    3. Nebojša Nakićenović & Nadejda Victor & Tsuneyuki Morita, 1998. "Emissions Scenarios Database and Review of Scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(2), pages 95-131, December.
    4. Steve Bankes, 1993. "Exploratory Modeling for Policy Analysis," Operations Research, INFORMS, vol. 41(3), pages 435-449, June.
    5. Watanabe, Chihiro, 1995. "Identification of the role of renewable energy," Renewable Energy, Elsevier, vol. 6(3), pages 237-274.
    6. Y.M. Ermoliev & V.I. Norkin, 1998. "Monte Carlo Optimization and Path Dependent Nonstationary Laws of Large Numbers," Working Papers ir98009, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Y.M. Ermoliev & T.Y. Ermolieva & G.J. MacDonald & V.I. Norkin, 1998. "On the Design of Catastrophic Risk Portfolios," Working Papers ir98056, International Institute for Applied Systems Analysis.
    2. Ma, T. & Grubler, A. & Nakamori, Y., 2009. "Modeling technology adoptions for sustainable development under increasing returns, uncertainty, and heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 195(1), pages 296-306, May.
    3. Grubler, Arnulf & Messner, Sabine, 1998. "Technological change and the timing of mitigation measures," Energy Economics, Elsevier, vol. 20(5-6), pages 495-512, December.
    4. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    5. Robert J. Lempert & David G. Groves & Steven W. Popper & Steve C. Bankes, 2006. "A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios," Management Science, INFORMS, vol. 52(4), pages 514-528, April.
    6. Takanobu Kosugi, 2010. "Assessments of ‘Greenhouse Insurance’: A Methodological Review," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(4), pages 345-363, December.
    7. Robalino, David & Lempert, Robert, 2000. "Carrots and sticks for new technology: Abating greenhouse gas emissions in a heterogeneous and uncertain world," MPRA Paper 12002, University Library of Munich, Germany.
    8. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    9. Guido A Veldhuis & Nico M de Reus & Bas MJ Keijser, 2020. "Concept development for comprehensive operations support with modeling and simulation," The Journal of Defense Modeling and Simulation, , vol. 17(1), pages 99-116, January.
    10. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    11. Shum, Kwok L. & Watanabe, Chihiro, 2007. "Photovoltaic deployment strategy in Japan and the USA--an institutional appraisal," Energy Policy, Elsevier, vol. 35(2), pages 1186-1195, February.
    12. Martinsen, Dag & Krey, Volker & Markewitz, Peter, 2007. "Implications of high energy prices for energy system and emissions--The response from an energy model for Germany," Energy Policy, Elsevier, vol. 35(9), pages 4504-4515, September.
    13. Lochhead, Kyle & Ghafghazi, Saeed & Havlik, Petr & Forsell, Nicklas & Obersteiner, Michael & Bull, Gary & Mabee, Warren, 2016. "Price trends and volatility scenarios for designing forest sector transformation," Energy Economics, Elsevier, vol. 57(C), pages 184-191.
    14. Li, Aitong & Xu, Yuan & Shiroyama, Hideaki, 2019. "Solar lobby and energy transition in Japan," Energy Policy, Elsevier, vol. 134(C).
    15. Lempert Robert J., 2014. "Embedding (some) benefit-cost concepts into decision support processes with deep uncertainty," Journal of Benefit-Cost Analysis, De Gruyter, vol. 5(3), pages 487-514, December.
    16. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    17. Chen, Huayi & Ma, Tieju, 2017. "Optimizing systematic technology adoption with heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 257(1), pages 287-296.
    18. Erik Pruyt & Jan H. Kwakkel, 2014. "Radicalization under deep uncertainty: a multi-model exploration of activism, extremism, and terrorism," System Dynamics Review, System Dynamics Society, vol. 30(1-2), pages 1-28, January.
    19. Jan H. Kwakkel & Erik Pruyt, 2015. "Using System Dynamics for Grand Challenges: The ESDMA Approach," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(3), pages 358-375, May.
    20. Taylor, Margaret, 2008. "Beyond technology-push and demand-pull: Lessons from California's solar policy," Energy Economics, Elsevier, vol. 30(6), pages 2829-2854, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:28:y:2000:i:13:p:907-921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.