IDEAS home Printed from https://ideas.repec.org/p/gii/ciesrp/cies_rp_24.html
   My bibliography  Save this paper

Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Application using Firm Level Patent Data

Author

Abstract

This paper investigates the determinants of directed technical change at the Firm level in the electricity generation sector. We use firm-level data on patents filed in renewable (REN) and fossil fuel (FF) technologies by 5,261 european firms over the period 1978-2006. We investigate how energy prices, market size and knowledge stocks affect firms' incentives to innovate in one technology relative to another and how these factors may thereby induce a shift from FF to REN technology in the electricity generation sector. We separately study small specialized firms, which innovate in only one type of technology during our sample period, and large mixed firms, which innovate in both technologies. We also separate the extensive margin innovation decision (i.e. whether to conduct innovation) from the intensive margin decision (i.e. how much to innovate). Overall, we find that all three factors - energy prices, market sizes and past knowledge stocks - matter to redirect innovation towards REN and away from FF technologies. Yet, we find that these factors have a larger impact on closing the technology gap through the entry (and exit) of small specialized firms, rather than through large mixed firms' innovation. An implication of our results is that firm dynamics are of direct policy interest to induce the replacement of FF by REN technologies in the electricity generation sector.

Suggested Citation

  • Joelle Noailly & Roger Smeets, 2014. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Application using Firm Level Patent Data," CIES Research Paper series 24-2014, Centre for International Environmental Studies, The Graduate Institute.
  • Handle: RePEc:gii:ciesrp:cies_rp_24
    as

    Download full text from publisher

    File URL: http://repec.graduateinstitute.ch/pdfs/ciesrp/CIES_RP_24.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Ufuk Akcigit & William R. Kerr, 2018. "Growth through Heterogeneous Innovations," Journal of Political Economy, University of Chicago Press, vol. 126(4), pages 1374-1443.
    3. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    4. James E. Anderson & Eric van Wincoop, 2003. "Gravity with Gravitas: A Solution to the Border Puzzle," American Economic Review, American Economic Association, vol. 93(1), pages 170-192, March.
    5. Lanzi, Elisa & Verdolini, Elena & Haščič, Ivan, 2011. "Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends," Energy Policy, Elsevier, vol. 39(11), pages 7000-7014.
    6. Martijn Burger & Frank van Oort & Gert-Jan Linders, 2009. "On the Specification of the Gravity Model of Trade: Zeros, Excess Zeros and Zero-inflated Estimation," Spatial Economic Analysis, Taylor & Francis Journals, vol. 4(2), pages 167-190.
    7. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    8. Baker, Erin & Shittu, Ekundayo, 2006. "Profit-maximizing R&D in response to a random carbon tax," Resource and Energy Economics, Elsevier, vol. 28(2), pages 160-180, May.
    9. Blundell, Richard & Griffith, Rachel & Windmeijer, Frank, 2002. "Individual effects and dynamics in count data models," Journal of Econometrics, Elsevier, vol. 108(1), pages 113-131, May.
    10. Malerba, Franco & Orsenigo, Luigi, 1999. "Technological entry, exit and survival: an empirical analysis of patent data," Research Policy, Elsevier, vol. 28(6), pages 643-660, August.
    11. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    12. Majo, M.C. & van Soest, A.H.O., 2011. "The Fixed-Effects Zero-Inflated Poisson Model with an Application to Health Care Utilization," Discussion Paper 2011-083, Tilburg University, Center for Economic Research.
    13. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    14. repec:fth:harver:1473 is not listed on IDEAS
    15. Di Maria, C. & van der Werf, E.H., 2005. "Carbon Leakage Revisited : Unilateral Climate Policy with Directed Technical Change," Discussion Paper 2005-68, Tilburg University, Center for Economic Research.
    16. Acemoglu, Daron & Cao, Dan, 2015. "Innovation by entrants and incumbents," Journal of Economic Theory, Elsevier, vol. 157(C), pages 255-294.
    17. Tor Jakob Klette & Samuel Kortum, 2004. "Innovating Firms and Aggregate Innovation," Journal of Political Economy, University of Chicago Press, vol. 112(5), pages 986-1018, October.
    18. Joseph E. Stiglitz, 1987. "Technological Change, Sunk Costs, and Competition," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 18(3, Specia), pages 883-947.
    19. Popp, David & Newell, Richard, 2012. "Where does energy R&D come from? Examining crowding out from energy R&D," Energy Economics, Elsevier, vol. 34(4), pages 980-991.
    20. Kamien, Morton I & Schwartz, Nancy L, 1975. "Market Structure and Innovation: A Survey," Journal of Economic Literature, American Economic Association, vol. 13(1), pages 1-37, March.
    21. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    22. Pere Arqué-Castells & Pierre Mohnen, 2015. "Sunk Costs, Extensive R&D Subsidies and Permanent Inducement Effects," Journal of Industrial Economics, Wiley Blackwell, vol. 63(3), pages 458-494, September.
    23. Aghion, Philippe & Akcigit, Ufuk & Howitt, Peter, 2014. "What Do We Learn From Schumpeterian Growth Theory?," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 0, pages 515-563, Elsevier.
    24. J. M. C. Santos Silva & Silvana Tenreyro, 2006. "The Log of Gravity," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 641-658, November.
    25. Hall, Bronwyn H. & Mairesse, Jacques, 1995. "Exploring the relationship between R&D and productivity in French manufacturing firms," Journal of Econometrics, Elsevier, vol. 65(1), pages 263-293, January.
    26. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    27. Elhanan Helpman & Marc Melitz & Yona Rubinstein, 2008. "Estimating Trade Flows: Trading Partners and Trading Volumes," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(2), pages 441-487.
    28. Blundell, Richard & Griffith, Rachel & Van Reenen, John, 1995. "Dynamic Count Data Models of Technological Innovation," Economic Journal, Royal Economic Society, vol. 105(429), pages 333-344, March.
    29. Breschi, Stefano & Lissoni, Francesco & Malerba, Franco, 2003. "Knowledge-relatedness in firm technological diversification," Research Policy, Elsevier, vol. 32(1), pages 69-87, January.
    30. Pere Arqué-Castells & Pierre Mohnen, 2015. "Sunk Costs, Extensive R&D Subsidies and Permanent Inducement Effects," Journal of Industrial Economics, Wiley Blackwell, vol. 63(3), pages 458-494, September.
    31. Douglas Hanley & Daron Acemoglu & Ufuk Akcigit & William Kerr, 2014. "Transition to Clean Technology," Working Paper 534, Department of Economics, University of Pittsburgh, revised Jan 2014.
    32. Juan A. Máñez & María E. Rochina‐Barrachina & Amparo Sanchis & Juan A. Sanchis, 2009. "The Role Of Sunk Costs In The Decision To Invest In R&D," Journal of Industrial Economics, Wiley Blackwell, vol. 57(4), pages 712-735, December.
    33. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    34. Corrado Maria & Edwin Werf, 2008. "Carbon leakage revisited: unilateral climate policy with directed technical change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(2), pages 55-74, February.
    35. Hall, Bronwyn & Van Reenen, John, 2000. "How effective are fiscal incentives for R&D? A review of the evidence," Research Policy, Elsevier, vol. 29(4-5), pages 449-469, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," CPB Discussion Paper 237, CPB Netherlands Bureau for Economic Policy Analysis.
    2. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," Working Papers 2013.34, Fondazione Eni Enrico Mattei.
    3. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    4. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p4oq2cqb0 is not listed on IDEAS
    5. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    6. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    7. Ufuk Akcigit & William R. Kerr, 2018. "Growth through Heterogeneous Innovations," Journal of Political Economy, University of Chicago Press, vol. 126(4), pages 1374-1443.
    8. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    9. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    10. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    11. Joëlle Noailly & Roger Smeets, 2022. "Financing Energy Innovation: Internal Finance and the Direction of Technical Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 145-169, September.
    12. Feng, Siyu & Lazkano, Itziar, 2022. "Innovation trends in electricity storage: What drives global innovation?," Energy Policy, Elsevier, vol. 167(C).
    13. Joelle Noailly; Roger Smeets, 2021. "Financing Energy Innovation: Internal Finance and the Direction of Technical Change," CIES Research Paper series 69-2021, Centre for International Environmental Studies, The Graduate Institute.
    14. Barbieri, Nicolò, 2016. "Fuel prices and the invention crowding out effect: Releasing the automotive industry from its dependence on fossil fuel," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 222-234.
    15. Rexhäuser, Sascha & Löschel, Andreas, 2015. "Invention in energy technologies: Comparing energy efficiency and renewable energy inventions at the firm level," Energy Policy, Elsevier, vol. 83(C), pages 206-217.
    16. Dolphin, G. & Pollitt, M., 2020. "Identifying Innovative Actors in the Electricicity Supply Industry Using Machine Learning: An Application to UK Patent Data," Cambridge Working Papers in Economics 2013, Faculty of Economics, University of Cambridge.
    17. Esfandiar Maasoumi & Almas Heshmati & Inhee Lee, 2021. "Green innovations and patenting renewable energy technologies," Empirical Economics, Springer, vol. 60(1), pages 513-538, January.
    18. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    19. Ufuk Akcigit & William Kerr, 2015. "Growth through Heterogeneous Innovation, Second Version," PIER Working Paper Archive 15-020, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Mar 2015.
    20. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    21. Lazkano, Itziar & Pham, Linh, 2016. "Do Fossil fuel Taxes Promote Innovation in Renewable Electricity Generation?," Discussion Paper Series in Economics 16/2016, Norwegian School of Economics, Department of Economics.

    More about this item

    Keywords

    Directed technical change; Renewable energy; Fossil fuel energy; Patents; Innovation; Firm dynamics;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gii:ciesrp:cies_rp_24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kristine Kjeldsen (email available below). General contact details of provider: https://edirc.repec.org/data/ciheich.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.