IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Application using Firm Level Patent Data

This paper investigates the determinants of directed technical change at the Firm level in the electricity generation sector. We use firm-level data on patents filed in renewable (REN) and fossil fuel (FF) technologies by 5,261 european firms over the period 1978-2006. We investigate how energy prices, market size and knowledge stocks affect firms' incentives to innovate in one technology relative to another and how these factors may thereby induce a shift from FF to REN technology in the electricity generation sector. We separately study small specialized firms, which innovate in only one type of technology during our sample period, and large mixed firms, which innovate in both technologies. We also separate the extensive margin innovation decision (i.e. whether to conduct innovation) from the intensive margin decision (i.e. how much to innovate). Overall, we find that all three factors - energy prices, market sizes and past knowledge stocks - matter to redirect innovation towards REN and away from FF technologies. Yet, we find that these factors have a larger impact on closing the technology gap through the entry (and exit) of small specialized firms, rather than through large mixed firms' innovation. An implication of our results is that firm dynamics are of direct policy interest to induce the replacement of FF by REN technologies in the electricity generation sector.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repec.graduateinstitute.ch/pdfs/ciesrp/CIES_RP_24.pdf
Download Restriction: no

Paper provided by Centre for International Environmental Studies, The Graduate Institute in its series CIES Research Paper series with number 24-2014.

as
in new window

Length: 49 pages
Date of creation: 01 Feb 2014
Handle: RePEc:gii:ciesrp:cies_rp_24
Contact details of provider: Postal:
Voie-Creuse 16, 1211 Geneva 21

Phone: +41 22 908 4461
Fax: +41 22 908 4461
Web page: http://www.graduateinstitute.ch/cies
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
  2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
  3. Blundell, Richard & Griffith, Rachel & Van Reenen, John, 1995. "Dynamic Count Data Models of Technological Innovation," Economic Journal, Royal Economic Society, vol. 105(429), pages 333-344, March.
  4. Martijn Burger & Frank van Oort & Gert-Jan Linders, 2009. "On the Specification of the Gravity Model of Trade: Zeros, Excess Zeros and Zero-inflated Estimation," Spatial Economic Analysis, Taylor & Francis Journals, vol. 4(2), pages 167-190.
  5. Breschi, Stefano & Lissoni, Francesco & Malerba, Franco, 2003. "Knowledge-relatedness in firm technological diversification," Research Policy, Elsevier, vol. 32(1), pages 69-87, January.
  6. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
  7. James E. Anderson & Eric van Wincoop, 2003. "Gravity with Gravitas: A Solution to the Border Puzzle," American Economic Review, American Economic Association, vol. 93(1), pages 170-192, March.
  8. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters,in: R&D and Productivity: The Econometric Evidence, pages 287-343 National Bureau of Economic Research, Inc.
  9. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
  10. Baker, Erin & Shittu, Ekundayo, 2006. "Profit-maximizing R&D in response to a random carbon tax," Resource and Energy Economics, Elsevier, vol. 28(2), pages 160-180, May.
  11. repec:pit:wpaper:534 is not listed on IDEAS
  12. Blundell, Richard & Griffith, Rachel & Windmeijer, Frank, 2002. "Individual effects and dynamics in count data models," Journal of Econometrics, Elsevier, vol. 108(1), pages 113-131, May.
  13. Malerba, Franco & Orsenigo, Luigi, 1999. "Technological entry, exit and survival: an empirical analysis of patent data," Research Policy, Elsevier, vol. 28(6), pages 643-660, August.
  14. Aghion, Philippe & Akcigit, Ufuk & Howitt, Peter, 2014. "What Do We Learn From Schumpeterian Growth Theory?," Handbook of Economic Growth,in: Handbook of Economic Growth, edition 1, volume 2, chapter 0, pages 515-563 Elsevier.
  15. J. M. C. Santos Silva & Silvana Tenreyro, 2006. "The Log of Gravity," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 641-658, November.
  16. Elhanan Helpman & Marc Melitz & Yona Rubinstein, 2008. "Estimating Trade Flows: Trading Partners and Trading Volumes," The Quarterly Journal of Economics, Oxford University Press, vol. 123(2), pages 441-487.
  17. Lanzi, Elisa & Verdolini, Elena & Haščič, Ivan, 2011. "Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends," Energy Policy, Elsevier, vol. 39(11), pages 7000-7014.
  18. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
  19. repec:fth:harver:1473 is not listed on IDEAS
  20. Juan A. Máñez & María E. Rochina-Barrachina & Amparo Sanchis & Juan A. Sanchis, 2009. "THE ROLE OF SUNK COSTS IN THE DECISION TO INVEST IN R&D -super-," Journal of Industrial Economics, Wiley Blackwell, vol. 57(4), pages 712-735, December.
  21. Acemoglu, Daron & Cao, Dan, 2015. "Innovation by entrants and incumbents," Journal of Economic Theory, Elsevier, vol. 157(C), pages 255-294.
  22. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
  23. Ufuk Akcigit & William R. Kerr, 2010. "Growth through Heterogeneous Innovations," PIER Working Paper Archive 10-035, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  24. Tor Jakob Klette & Samuel Kortum, 2004. "Innovating Firms and Aggregate Innovation," Journal of Political Economy, University of Chicago Press, vol. 112(5), pages 986-1018, October.
  25. Joseph E. Stiglitz, 1987. "Technological Change, Sunk Costs, and Competition," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 18(3), pages 883-947.
  26. Popp, David & Newell, Richard, 2012. "Where does energy R&D come from? Examining crowding out from energy R&D," Energy Economics, Elsevier, vol. 34(4), pages 980-991.
  27. Hall, Bronwyn H. & Mairesse, Jacques, 1995. "Exploring the relationship between R&D and productivity in French manufacturing firms," Journal of Econometrics, Elsevier, vol. 65(1), pages 263-293, January.
  28. Kamien, Morton I & Schwartz, Nancy L, 1975. "Market Structure and Innovation: A Survey," Journal of Economic Literature, American Economic Association, vol. 13(1), pages 1-37, March.
  29. Majo, M.C. & van Soest, A.H.O., 2011. "The Fixed-Effects Zero-Inflated Poisson Model with an Application to Health Care Utilization," Discussion Paper 2011-083, Tilburg University, Center for Economic Research.
  30. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
  31. Hall, Bronwyn & Van Reenen, John, 2000. "How effective are fiscal incentives for R&D? A review of the evidence," Research Policy, Elsevier, vol. 29(4-5), pages 449-469, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:gii:ciesrp:cies_rp_24. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kristine Kjeldsen)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.