IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Where does energy R&D come from? Examining crowding out from energy R&D

  • Popp, David
  • Newell, Richard

Recent efforts to endogenize technological change in climate policy models demonstrate the importance of accounting for the opportunity cost of climate R&D investments. Because the social returns to R&D investments are typically higher than the social returns to other types of investment, any new climate mitigation R&D that comes at the expense of other R&D investment may dampen the overall gains from induced technological change. Unfortunately, there has been little empirical work to guide modelers as to the potential magnitude of such crowding out effects. This paper considers both the private and social opportunity costs of climate R&D. Addressing private costs, we ask whether an increase in climate R&D represents new R&D spending, or whether some (or all) of the additional climate R&D comes at the expense of other R&D. Addressing social costs, we use patent citations to compare the social value of alternative energy research to other types of R&D that may be crowded out. Beginning at the industry level, we find no evidence of crowding out across sectors—that is, increases in energy R&D do not draw R&D resources away from sectors that do not perform R&D. Given this, we proceed with a detailed look at alternative energy R&D. Linking patent data and financial data by firm, we ask whether an increase in alternative energy patents leads to a decrease in other types of patenting activity. While we find that increases in alternative energy patents do result in fewer patents of other types, the evidence suggests that this is due to profit-maximizing changes in research effort, rather than financial constraints that limit the total amount of R&D possible. Finally, we use patent citation data to compare the social value of alternative energy patents to other patents by these firms. Alternative energy patents are cited more frequently, and by a wider range of other technologies, than other patents by these firms, suggesting that their social value is higher.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0140988311001319
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Energy Economics.

Volume (Year): 34 (2012)
Issue (Month): 4 ()
Pages: 980-991

as
in new window

Handle: RePEc:eee:eneeco:v:34:y:2012:i:4:p:980-991
Contact details of provider: Web page: http://www.elsevier.com/locate/eneco

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bronwyn Hall, 2004. "The financing of research and development," Chapters, in: Financial Systems, Corporate Investment in Innovation, and Venture Capital, chapter 2 Edward Elgar.
  2. Mansfield, Edwin, et al, 1977. "Social and Private Rates of Return from Industrial Innovations," The Quarterly Journal of Economics, MIT Press, vol. 91(2), pages 221-40, May.
  3. Hall, Bronwyn H. & Mairesse, Jaques & Branstetter, Lee & Crepon, Bruno, 1998. "Does Cash Flow Cause Investment and R&D: An Exploration Using Panel Data for French, Japanese, and United States Scientific Firms," Department of Economics, Working Paper Series qt11v204tz, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
  4. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  5. Gerlagh, Reyer, 2008. "A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings," Energy Economics, Elsevier, vol. 30(2), pages 425-448, March.
  6. Gerlagh, R. & Kverndokk, S. & Rosendahl, K.E., 2009. "Optimal timing of climate change policy : Interaction between carbon taxes and innovation externalities," Other publications TiSEM 4312dde8-f323-4ee2-9764-a, Tilburg University, School of Economics and Management.
  7. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
  8. Thomas Roediger-Schluga, 2003. "Some Micro-Evidence on the "Porter Hypothesis" from Austrian VOC Emission Standards," Growth and Change, Wiley Blackwell, vol. 34(3), pages 359-379.
  9. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
  10. David Roodman, 2006. "How to Do xtabond2: An Introduction to "Difference" and "System" GMM in Stata," Working Papers 103, Center for Global Development.
  11. repec:ner:tilbur:urn:nbn:nl:ui:12-3777015 is not listed on IDEAS
  12. David Popp, 2006. "They Don'T Invent Them Like They Used To: An Examination Of Energy Patent Citations Over Time," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(8), pages 753-776.
  13. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
  14. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, 04.
  15. James R. Brown & Steven M. Fazzari & Bruce C. Petersen, 2009. "Financing Innovation and Growth: Cash Flow, External Equity, and the 1990s R&D Boom," Journal of Finance, American Finance Association, vol. 64(1), pages 151-185, 02.
  16. Spiros Bougheas & Holger Görg & Eric Strobl, 2003. "Is R & D Financially Constrained? Theory and Evidence from Irish Manufacturing," Review of Industrial Organization, Springer, vol. 22(2), pages 159-174, March.
  17. Griliches, Zvi, 1990. "Patent Statistics as Economic Indicators: A Survey," Journal of Economic Literature, American Economic Association, vol. 28(4), pages 1661-1707, December.
  18. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2007. "Enhanced routines for instrumental variables/GMM estimation and testing," Boston College Working Papers in Economics 667, Boston College Department of Economics, revised 05 Sep 2007.
  19. Carter Bloch, 2005. "R&D investment and internal finance: the cash flow effect," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(3), pages 213-223.
  20. Nemet, Gregory F. & Kammen, Daniel M., 2007. "U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion," Energy Policy, Elsevier, vol. 35(1), pages 746-755, January.
  21. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
  22. de Coninck, Heleen & Fischer, Carolyn & Newell, Richard G. & Ueno, Takahiro, 2008. "International technology-oriented agreements to address climate change," Energy Policy, Elsevier, vol. 36(1), pages 335-356, January.
  23. repec:fth:harver:1473 is not listed on IDEAS
  24. Hart, Rob, 2008. "The timing of taxes on CO2 emissions when technological change is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 194-212, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:34:y:2012:i:4:p:980-991. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.