IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v41y2012i1p190-200.html
   My bibliography  Save this article

Do important inventions benefit from knowledge originating in other technological domains?

Author

Listed:
  • Nemet, Gregory F.
  • Johnson, Evan

Abstract

A frequently made claim in the innovation literature is that important inventions involve the transfer of new knowledge from one technological domain to another. This study uses U.S. patents granted from 1976 to 2006 to identify the role of knowledge acquired from outside each patent's technological domain. Our results do not seem to support the claim above. Increasing citations to external prior art is a significantly less important predictor of forward citation frequency than citing prior art that is technologically closer. This result is robust across several model specifications and ways of defining whether each flow of knowledge is external. The result is even stronger in the most highly cited technology categories. We discuss possible explanations for this apparently negative impact of external knowledge—including both measurement issues and challenges associated with assimilating disparate knowledge.

Suggested Citation

  • Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
  • Handle: RePEc:eee:respol:v:41:y:2012:i:1:p:190-200 DOI: 10.1016/j.respol.2011.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733311001661
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. Jaffe, Adam B & Fogarty, Michael S & Banks, Bruce A, 1998. "Evidence from Patents and Patent Citations on the Impact of NASA and Other Federal Labs on Commercial Innovation," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 183-205, June.
    3. Rosenberg, Nathan, 2009. "Some critical episodes in the progress of medical innovation: An Anglo-American perspective," Research Policy, Elsevier, vol. 38(2), pages 234-242, March.
    4. Benner, Mary & Waldfogel, Joel, 2008. "Close to you? Bias and precision in patent-based measures of technological proximity," Research Policy, Elsevier, pages 1556-1567.
    5. Suzuki, Jun & Kodama, Fumio, 2004. "Technological diversity of persistent innovators in Japan: Two case studies of large Japanese firms," Research Policy, Elsevier, vol. 33(3), pages 531-549, April.
    6. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters,in: R&D and Productivity: The Econometric Evidence, pages 287-343 National Bureau of Economic Research, Inc.
    7. Dahlin, Kristina B. & Behrens, Dean M., 2005. "When is an invention really radical?: Defining and measuring technological radicalness," Research Policy, Elsevier, vol. 34(5), pages 717-737, June.
    8. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    9. Roberto Fontana & Alessandro Nuvolari & Bart Verspagen, 2009. "Mapping technological trajectories as patent citation networks. An application to data communication standards," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 18(4), pages 311-336.
    10. Bessen, James, 2005. "Patents and the diffusion of technical information," Economics Letters, Elsevier, vol. 86(1), pages 121-128, January.
    11. K. Pavitt & M. Robson & J. Townsend, 1989. "Technological Accumulation, Diversification and Organisation in UK Companies, 1945--1983," Management Science, INFORMS, vol. 35(1), pages 81-99, January.
    12. Bessen, James, 2008. "The value of U.S. patents by owner and patent characteristics," Research Policy, Elsevier, vol. 37(5), pages 932-945, June.
    13. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    14. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
    15. Scherer, F M, 1982. "Inter-Industry Technology Flows and Productivity Growth," The Review of Economics and Statistics, MIT Press, vol. 64(4), pages 627-634, November.
    16. Cuijpers, Maarten & Guenter, Hannes & Hussinger, Katrin, 2011. "Costs and benefits of inter-departmental innovation collaboration," Research Policy, Elsevier, pages 565-575.
    17. Schoenmakers, Wilfred & Duysters, Geert, 2010. "The technological origins of radical inventions," Research Policy, Elsevier, vol. 39(8), pages 1051-1059, October.
    18. Rosell, Carlos & Agrawal, Ajay, 2009. "Have university knowledge flows narrowed?: Evidence from patent data," Research Policy, Elsevier, vol. 38(1), pages 1-13, February.
    19. Garcia-Vega, Maria, 2006. "Does technological diversification promote innovation?: An empirical analysis for European firms," Research Policy, Elsevier, vol. 35(2), pages 230-246, March.
    20. Gilsing, Victor & Nooteboom, Bart & Vanhaverbeke, Wim & Duysters, Geert & van den Oord, Ad, 2008. "Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density," Research Policy, Elsevier, pages 1717-1731.
    21. repec:fth:harver:1473 is not listed on IDEAS
    22. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    23. Scherer, F. M., 1982. "Inter-industry technology flows in the United States," Research Policy, Elsevier, vol. 11(4), pages 227-245, August.
    24. Nelson, Richard R. & Wolff, Edward N., 1997. "Factors behind cross-industry differences in technical progress," Structural Change and Economic Dynamics, Elsevier, vol. 8(2), pages 205-220, June.
    25. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    26. Mina, A. & Ramlogan, R. & Tampubolon, G. & Metcalfe, J.S., 2007. "Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge," Research Policy, Elsevier, vol. 36(5), pages 789-806, June.
    27. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    28. Nelson, Richard R., 2003. "On the uneven evolution of human know-how," Research Policy, Elsevier, vol. 32(6), pages 909-922, June.
    29. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    30. Atul Nerkar, 2003. "Old Is Gold? The Value of Temporal Exploration in the Creation of New Knowledge," Management Science, INFORMS, vol. 49(2), pages 211-229, February.
    31. Manuel Trajtenberg & Adam B. Jaffe & Michael S. Fogarty, 2000. "Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors," American Economic Review, American Economic Association, vol. 90(2), pages 215-218, May.
    32. Olav Sorenson & Jan W. Rivkin & Lee Fleming, 2010. "Complexity, Networks and Knowledge Flows," Chapters,in: The Handbook of Evolutionary Economic Geography, chapter 15 Edward Elgar Publishing.
    33. Aaron J. Shenhar, 2001. "One Size Does Not Fit All Projects: Exploring Classical Contingency Domains," Management Science, INFORMS, vol. 47(3), pages 394-414, March.
    34. Nicolas van Zeebroeck, 2011. "The puzzle of patent value indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(1), pages 33-62.
    35. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    36. Dahlin, Kristina & Taylor, Margaret & Fichman, Mark, 2004. "Today's Edisons or weekend hobbyists: technical merit and success of inventions by independent inventors," Research Policy, Elsevier, vol. 33(8), pages 1167-1183, October.
    37. Scherer, F. M. & Harhoff, Dietmar, 2000. "Technology policy for a world of skew-distributed outcomes," Research Policy, Elsevier, vol. 29(4-5), pages 559-566, April.
    38. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    39. Mariani, Myriam, 2004. "What determines technological hits?: Geography versus firm competencies," Research Policy, Elsevier, vol. 33(10), pages 1565-1582, December.
    40. Maurseth, Per Botolf & Verspagen, Bart, 2002. " Knowledge Spillovers in Europe: A Patent Citations Analysis," Scandinavian Journal of Economics, Wiley Blackwell, vol. 104(4), pages 531-545, December.
    41. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    42. Barberá-Tomás, David & Jiménez-Sáez, Fernando & Castelló-Molina, Itziar, 2011. "Mapping the importance of the real world: The validity of connectivity analysis of patent citations networks," Research Policy, Elsevier, vol. 40(3), pages 473-486, April.
    43. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67, pages 297-297.
    44. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    45. David Popp, 2006. "They Don'T Invent Them Like They Used To: An Examination Of Energy Patent Citations Over Time," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(8), pages 753-776.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McNamee, Robert C., 2013. "Can’t see the forest for the leaves: Similarity and distance measures for hierarchical taxonomies with a patent classification example," Research Policy, Elsevier, vol. 42(4), pages 855-873.
    2. repec:spr:scient:v:95:y:2013:i:2:d:10.1007_s11192-013-0962-3 is not listed on IDEAS
    3. repec:eee:tefoso:v:122:y:2017:i:c:p:12-23 is not listed on IDEAS
    4. Martin Kalthaus, 2016. "Knowledge recombination along the technology life cycle," Jena Economic Research Papers 2016-012, Friedrich-Schiller-University Jena.
    5. repec:spr:scient:v:111:y:2017:i:2:d:10.1007_s11192-017-2329-7 is not listed on IDEAS
    6. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    7. Altwies, Joy E. & Nemet, Gregory F., 2013. "Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology," Energy Policy, Elsevier, vol. 52(C), pages 819-831.
    8. Clancy, Matthew, 2015. "Combinatorial Innovation and Research Strategies: Theoretical Framework and Empirical Evidence from Two Centuries of Patent Data," Staff General Research Papers Archive 38400, Iowa State University, Department of Economics.
    9. Stephan, Annegret & Schmidt, Tobias S. & Bening, Catharina R. & Hoffmann, Volker H., 2017. "The sectoral configuration of technological innovation systems: Patterns of knowledge development and diffusion in the lithium-ion battery technology in Japan," Research Policy, Elsevier, vol. 46(4), pages 709-723.
    10. Joelle Noailly & Victoria Shestalova, 2013. "Knowledge Spillovers from Renewable energy Technologies, Lessons from patent citations," CIES Research Paper series 22-2013, Centre for International Environmental Studies, The Graduate Institute.
    11. Huenteler, Joern & Schmidt, Tobias S. & Ossenbrink, Jan & Hoffmann, Volker H., 2016. "Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 102-121.
    12. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    13. Joëlle Noailly & Victoria Shestalova, 2013. "Knowledge spillovers from renewable energy technologies, Lessons from patent citations," CPB Discussion Paper 262, CPB Netherlands Bureau for Economic Policy Analysis.
    14. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    15. repec:eee:respol:v:47:y:2018:i:1:p:252-265 is not listed on IDEAS
    16. repec:wsi:ijitmx:v:14:y:2017:i:01:n:s0219877017400041 is not listed on IDEAS
    17. Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
    18. repec:gam:jsusta:v:9:y:2017:i:4:p:541-:d:94915 is not listed on IDEAS
    19. Lee, You-Na & Walsh, John P. & Wang, Jian, 2015. "Creativity in scientific teams: Unpacking novelty and impact," Research Policy, Elsevier, vol. 44(3), pages 684-697.
    20. Benson, Christopher L. & Magee, Christopher L., 2014. "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, Elsevier, vol. 68(C), pages 745-751.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:41:y:2012:i:1:p:190-200. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/respol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.