IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v191y2025ics0148296325000797.html
   My bibliography  Save this article

Trajectory integration and the impact of inventions

Author

Listed:
  • Kok, Holmer
  • Monroe, Joseph
  • Kappen, Philip

Abstract

This study introduces the concept of trajectory integration in recombinant search, where inventors recombine multiple inventions from a shared pre-existing trajectory. As inventions within a trajectory build upon their predecessors, we theorize that inventors can learn from these interconnections to develop more effective approaches to new problems. We argue that the benefits of trajectory integration depend on whether inventions in the trajectory belong to the focal domain (inner-domain trajectory integration) or lie outside it (outer-domain trajectory integration). Analyzing 19,266 nuclear energy patent families, we find that inner-domain trajectory integration is linked to higher impact within the focal domain but lower impact outside it. Conversely, outer-domain trajectory integration is associated with impact beyond the focal domain but shows no link to impact within it. We contribute to recombinant search literature by highlighting the relevance of considering the historical context of inventions and their trajectories to better understand their value.

Suggested Citation

  • Kok, Holmer & Monroe, Joseph & Kappen, Philip, 2025. "Trajectory integration and the impact of inventions," Journal of Business Research, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:jbrese:v:191:y:2025:i:c:s0148296325000797
    DOI: 10.1016/j.jbusres.2025.115256
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296325000797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2025.115256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jurriën Bakker & Dennis Verhoeven & Lin Zhang & Bart Van Looy, 2016. "Patent citation indicators: One size fits all?," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 187-211, January.
    2. Lee, Kyung Yul & Jung, Hyun Ju & Kwon, Youngsun, 2024. "Boundary-spanning technology search, product component reuse, and new product innovation: Evidence from the smartphone industry," Research Policy, Elsevier, vol. 53(4).
    3. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    4. Gerard George & Reddi Kotha & Yanfeng Zheng, 2008. "Entry into Insular Domains: A Longitudinal Study of Knowledge Structuration and Innovation in Biotechnology Firms," Journal of Management Studies, Wiley Blackwell, vol. 45(8), pages 1448-1474, December.
    5. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    6. de Rassenfosse, Gaétan & Dernis, Hélène & Guellec, Dominique & Picci, Lucio & van Pottelsberghe de la Potterie, Bruno, 2013. "The worldwide count of priority patents: A new indicator of inventive activity," Research Policy, Elsevier, vol. 42(3), pages 720-737.
    7. Tan, David & Roberts, Peter W., 2010. "Categorical coherence, classification volatility and examiner-added citations," Research Policy, Elsevier, vol. 39(1), pages 89-102, February.
    8. Sam Arts & Francesco Paolo Appio & Bart Looy, 2013. "Inventions shaping technological trajectories: do existing patent indicators provide a comprehensive picture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 397-419, November.
    9. Kim, Jeeeun & Lee, Sungjoo, 2015. "Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 332-345.
    10. Adamantiades, A. & Kessides, I., 2009. "Nuclear power for sustainable development: Current status and future prospects," Energy Policy, Elsevier, vol. 37(12), pages 5149-5166, December.
    11. Lionel Nesta & Ludovic Dibiaggio, 2003. "Technology Strategy and Knowledge Dynamics: The Case of Biotech¹," Industry and Innovation, Taylor & Francis Journals, vol. 10(3), pages 331-349.
    12. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    13. Raghu Garud & Praveen R. Nayyar, 1994. "Transformative capacity: Continual structuring by intertemporal technology transfer," Strategic Management Journal, Wiley Blackwell, vol. 15(5), pages 365-385, June.
    14. Kok, Holmer & Faems, Dries & de Faria, Pedro, 2020. "Ties that matter: The impact of alliance partner knowledge recombination novelty on knowledge utilization in R&D alliances," Research Policy, Elsevier, vol. 49(7).
    15. Sam Arts & Lee Fleming, 2018. "Paradise of Novelty—Or Loss of Human Capital? Exploring New Fields and Inventive Output," Organization Science, INFORMS, vol. 29(6), pages 1074-1092, December.
    16. Russell J. Funk & Jason Owen-Smith, 2017. "A Dynamic Network Measure of Technological Change," Management Science, INFORMS, vol. 63(3), pages 791-817, March.
    17. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    18. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    19. Hyun Ju Jung, 2020. "Recombination sources and breakthrough inventions: university-developed technology versus firm-developed technology," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1121-1166, August.
    20. Subramanian, Annapoornima M. & Bo, Wang & Kah-Hin, Chai, 2018. "The role of knowledge base homogeneity in learning from strategic alliances," Research Policy, Elsevier, vol. 47(1), pages 158-168.
    21. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    22. Sharon Belenzon, 2012. "Cumulative Innovation and Market Value: Evidence from Patent Citations," Economic Journal, Royal Economic Society, vol. 122(559), pages 265-285, March.
    23. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    24. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    25. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    26. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    27. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2004. "Erratum to "Citations, family size, opposition and the value of patent rights" [Research Policy 32 (2003) 1343-1363]," Research Policy, Elsevier, vol. 33(2), pages 363-364, March.
    28. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    29. Madeline K. Kneeland & Melissa A. Schilling & Barak S. Aharonson, 2020. "Exploring Uncharted Territory: Knowledge Search Processes in the Origination of Outlier Innovation," Organization Science, INFORMS, vol. 31(3), pages 535-557, May.
    30. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    31. Meyer, John & Subramaniam, Mohan, 2014. "Appropriating innovation's technical value: Examining the influence of exploration," Journal of Business Research, Elsevier, vol. 67(1), pages 2860-2866.
    32. Olav Sorenson & Jan W. Rivkin & Lee Fleming, 2010. "Complexity, Networks and Knowledge Flows," Chapters, in: Ron Boschma & Ron Martin (ed.), The Handbook of Evolutionary Economic Geography, chapter 15, Edward Elgar Publishing.
    33. Fusillo, Fabrizio, 2023. "Green Technologies and diversity in the knowledge search and output phases: Evidence from European Patents," Research Policy, Elsevier, vol. 52(4).
    34. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    35. Wagner, Stefan & Wakeman, Simon, 2016. "What do patent-based measures tell us about product commercialization? Evidence from the pharmaceutical industry," Research Policy, Elsevier, vol. 45(5), pages 1091-1102.
    36. Mazaheri, Maryam & Bonnin Roca, Jaime & Markus, Arjan & Tur, Elena M. & Walrave, Bob, 2024. "Maturity assessment of green patent clusters: Methodological implications," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    37. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    38. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    39. Yanfeng Zheng & Qinyu (Ryan) Wang, 2020. "Shadow of the great firewall: The impact of Google blockade on innovation in China," Strategic Management Journal, Wiley Blackwell, vol. 41(12), pages 2234-2260, December.
    40. Nilam Kaushik & Bilal Gokpinar, 2023. "Sequential Innovation in Mobile App Development," Manufacturing & Service Operations Management, INFORMS, vol. 25(1), pages 182-199, January.
    41. Gino Cattani, 2006. "Technological pre-adaptation, speciation, and emergence of new technologies: how Corning invented and developed fiber optics," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 15(2), pages 285-318, April.
    42. Lee Fleming, 2002. "Finding the organizational sources of technological breakthroughs: the story of Hewlett-Packard's thermal ink-jet," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 1059-1084, November.
    43. Clancy, Matthew S., 2018. "Inventing by combining pre-existing technologies: Patent evidence on learning and fishing out," Research Policy, Elsevier, vol. 47(1), pages 252-265.
    44. Lori Rosenkopf & Paul Almeida, 2003. "Overcoming Local Search Through Alliances and Mobility," Management Science, INFORMS, vol. 49(6), pages 751-766, June.
    45. Maggitti, Patrick G. & Smith, Ken G. & Katila, Riitta, 2013. "The complex search process of invention," Research Policy, Elsevier, vol. 42(1), pages 90-100.
    46. Lori Rosenkopf & Atul Nerkar, 2001. "Beyond local search: boundary‐spanning, exploration, and impact in the optical disk industry," Strategic Management Journal, Wiley Blackwell, vol. 22(4), pages 287-306, April.
    47. Dahlin, Kristina B. & Behrens, Dean M., 2005. "When is an invention really radical?: Defining and measuring technological radicalness," Research Policy, Elsevier, vol. 34(5), pages 717-737, June.
    48. Gao, Xue & Rai, Varun, 2023. "Knowledge acquisition and innovation quality: The moderating role of geographical characteristics of technology," Technovation, Elsevier, vol. 125(C).
    49. Schoenmakers, Wilfred & Duysters, Geert, 2010. "The technological origins of radical inventions," Research Policy, Elsevier, vol. 39(8), pages 1051-1059, October.
    50. Gianluca Orsatti, 2024. "Government R&D and green technology spillovers: the Chernobyl disaster as a natural experiment," The Journal of Technology Transfer, Springer, vol. 49(2), pages 581-608, April.
    51. Friedman, Walter A. & Jones, Geoffrey, 2011. "Business History: Time for Debate," Business History Review, Cambridge University Press, vol. 85(01), pages 1-8, March.
    52. Anindya Ghosh & Xavier Martin & Johannes M. Pennings & Filippo Carlo Wezel, 2014. "Ambition Is Nothing Without Focus: Compensating for Negative Transfer of Experience in R&D," Organization Science, INFORMS, vol. 25(2), pages 572-590, April.
    53. Atul Nerkar, 2003. "Old Is Gold? The Value of Temporal Exploration in the Creation of New Knowledge," Management Science, INFORMS, vol. 49(2), pages 211-229, February.
    54. Sam Arts & Reinhilde Veugelers, 2015. "Technology familiarity, recombinant novelty, and breakthrough invention," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(6), pages 1215-1246.
    55. Kristina Dahlin & Deans M. Behrens, 2005. "When is an invention really radical? Defining and measuring technological radicalness," Post-Print hal-00480416, HAL.
    56. Nylund, Petra A. & Brem, Alexander & Agarwal, Nivedita, 2022. "Enabling technologies mitigating climate change: The role of dominant designs in environmental innovation ecosystems," Technovation, Elsevier, vol. 117(C).
    57. Jeongsik “Jay” Lee & Hyun Ju Jung & Hyunwoo Park, 2023. "Rare is beautiful? Rareness, technology value, and the moderating role of search domain and knowledge maturity," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1019-1040, April.
    58. Huenteler, Joern & Ossenbrink, Jan & Schmidt, Tobias S. & Hoffmann, Volker H., 2016. "How a product’s design hierarchy shapes the evolution of technological knowledge—Evidence from patent-citation networks in wind power," Research Policy, Elsevier, vol. 45(6), pages 1195-1217.
    59. Yang, Hongyan & Steensma, H. Kevin, 2014. "When do firms rely on their knowledge spillover recipients for guidance in exploring unfamiliar knowledge?," Research Policy, Elsevier, vol. 43(9), pages 1496-1507.
    60. Nathan R. Furr & Daniel C. Snow, 2015. "Intergenerational Hybrids: Spillbacks, Spillforwards, and Adapting to Technology Discontinuities," Organization Science, INFORMS, vol. 26(2), pages 475-493, April.
    61. Marc Gruber & Dietmar Harhoff & Karin Hoisl, 2013. "Knowledge Recombination Across Technological Boundaries: Scientists vs. Engineers," Management Science, INFORMS, vol. 59(4), pages 837-851, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kok, Holmer & Faems, Dries & de Faria, Pedro, 2020. "Ties that matter: The impact of alliance partner knowledge recombination novelty on knowledge utilization in R&D alliances," Research Policy, Elsevier, vol. 49(7).
    2. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    3. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    4. Avimanyu Datta, 2016. "Antecedents To Radical Innovations: A Longitudinal Look At Firms In The Information Technology Industry By Aggregation Of Patents," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-31, October.
    5. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    6. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    7. Sun, Bixuan & Kolesnikov, Sergey & Goldstein, Anna & Chan, Gabriel, 2021. "A dynamic approach for identifying technological breakthroughs with an application in solar photovoltaics," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    8. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    9. McCarthy, Killian J & Aalbers, Hendrik Leendert, 2022. "Alliance-to-acquisition transitions: The technological performance implications of acquiring one's alliance partners," Research Policy, Elsevier, vol. 51(6).
    10. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    11. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    12. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    13. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    14. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    15. Kathryn Rudie Harrigan & Maria Chiara Guardo & Bo Cowgill, 2017. "Multiplicative-innovation synergies: tests in technological acquisitions," The Journal of Technology Transfer, Springer, vol. 42(5), pages 1212-1233, October.
    16. Avimanyu Datta, 2016. "Evaluating The Antecedents Of Foundational Innovations: A Longitudinal Look At Patents From Information Technology Industry," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-29, January.
    17. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    18. Kolja Hesse & Dirk Fornahl, 2020. "Essential ingredients for radical innovations? The role of (un‐)related variety and external linkages in Germany," Papers in Regional Science, Wiley Blackwell, vol. 99(5), pages 1165-1183, October.
    19. Ron Boschma & Ernest Miguelez & Rosina Moreno & Diego B. Ocampo-Corrales, 2021. "Technological breakthroughs in European regions: the role of related and unrelated combinations," Papers in Evolutionary Economic Geography (PEEG) 2118, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.
    20. Qu, Guannan & Chen, Jin & Zhang, Ruhao & Wang, Luyao & Yang, Yayu, 2023. "Technological search strategy and breakthrough innovation: An integrated approach based on main-path analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:191:y:2025:i:c:s0148296325000797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.