IDEAS home Printed from https://ideas.repec.org/p/srt/wpaper/1115.html
   My bibliography  Save this paper

Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies

Author

Listed:
  • Valeria Costantini

    (Department of Economics, Roma Tre University, Rome (Italy))

  • Francesco Crespi

    (Department of Economics, Roma Tre University, Rome (Italy))

  • Alessandro Palma

    (Department of Economics, Roma Tre University, Rome (Italy))

Abstract

This paper provides an empirical investigation of the role played by selected characteristics of the policy mix in inducing innovation in energy efficiency technologies. An original dataset covering 23 OECD countries over the period 1990-2010 combines the full set of policies in the energy efficiency domain for the residential sector with data on patents applied over the same period in this specific technological sector. The evidence of a positive policy inducement effect on innovation dynamics is enriched by the following main results: i) policy mix comprehensiveness is influential since countries adopting different instruments show a relatively higher positive inducement effect; ii) inconsistency problems between the different tools forming the policy mix may negatively influence innovation activities when the variety of policy instruments becomes excessive; iii) the different instruments forming the policy mix need to be well balanced in their relative strength in order to reduce potential negative lock-in effects; iv) the greater the external balance of the national policy strategy with the policy setting of other similar countries, the higher the inducement effect on the technological dynamics of the investigated country. Several suggestions for implementing effective policy strategies can be made in this case study that can be potentially extended to other technology domains.

Suggested Citation

  • Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
  • Handle: RePEc:srt:wpaper:1115
    as

    Download full text from publisher

    File URL: http://www.sustainability-seeds.org/papers/RePec/srt/wpaper/1115.pdf
    File Function: First version, 2015
    Download Restriction: no

    File URL: http://www.sustainability-seeds.org/papers/RePec/srt/wpaper/1115.pdf
    File Function: Revised version, 2015
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph M. Crabb & Daniel K.N. Johnson, 2010. "Fueling Innovation: The Impact of Oil Prices and CAFE Standards on Energy-Efficient Automotive Technology," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 199-216.
    2. Hall, Bronwyn H & Griliches, Zvi & Hausman, Jerry A, 1986. "Patents and R and D: Is There a Lag?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 27(2), pages 265-283, June.
    3. Frank Windmeijer, 2006. "GMM for panel count data models," CeMMAP working papers CWP21/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Jaffe Adam B. & Stavins Robert N., 1995. "Dynamic Incentives of Environmental Regulations: The Effects of Alternative Policy Instruments on Technology Diffusion," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 43-63, November.
    5. Vanessa Oltra & Rene Kemp & Frans P. De Vries, 2010. "Patents as a measure for eco-innovation," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 13(2), pages 130-148.
    6. Valeria Costantini & Francesco Crespi, 2013. "Public policies for a sustainable energy sector: regulation, diversity and fostering of innovation," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 401-429, April.
    7. Laleman, Ruben & Albrecht, Johan, 2014. "Comparing push and pull measures for PV and wind in Europe," Renewable Energy, Elsevier, vol. 61(C), pages 33-37.
    8. Beise, Marian & Rennings, Klaus, 2005. "Lead markets and regulation: a framework for analyzing the international diffusion of environmental innovations," Ecological Economics, Elsevier, vol. 52(1), pages 5-17, January.
    9. Triguero, Angela & Moreno-Mondéjar, Lourdes & Davia, María A., 2013. "Drivers of different types of eco-innovation in European SMEs," Ecological Economics, Elsevier, vol. 92(C), pages 25-33.
    10. Dechezlepretre, Antoine & Glachant, Matthieu & Hascic, Ivan & Johnstone, Nick & Meniere, Yann, 2009. "Invention and Transfer of Climate Change Mitigation Technologies on a Global Scale: A Study Drawing on Patent Data," Sustainable Development Papers 54361, Fondazione Eni Enrico Mattei (FEEM).
    11. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    12. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    13. Ivan Haščič & Frans de Vries & Nick Johnstone & Neelakshi Medhi, 2009. "Effects of environmental policy on the type of innovation: The case of automotive emission-control technologies," OECD Journal: Economic Studies, OECD Publishing, vol. 2009(1), pages 1-18.
    14. Horbach, Jens & Rammer, Christian & Rennings, Klaus, 2012. "Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull," Ecological Economics, Elsevier, vol. 78(C), pages 112-122.
    15. Metcalfe, Stan & Ramlogan, Ronnie, 2008. "Innovation systems and the competitive process in developing economies," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(2), pages 433-446, May.
    16. Marin, Giovanni, 2014. "Do eco-innovations harm productivity growth through crowding out? Results of an extended CDM model for Italy," Research Policy, Elsevier, vol. 43(2), pages 301-317.
    17. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    18. repec:fth:harver:1473 is not listed on IDEAS
    19. Bronwyn H. Hall, 2010. "Measuring the Returns to R&D: The Depreciation Problem," NBER Chapters, in: Contributions in Memory of Zvi Griliches, pages 341-381, National Bureau of Economic Research, Inc.
    20. Popp, David & Hafner, Tamara & Johnstone, Nick, 2011. "Environmental policy vs. public pressure: Innovation and diffusion of alternative bleaching technologies in the pulp industry," Research Policy, Elsevier, vol. 40(9), pages 1253-1268.
    21. Wagner, Marcus, 2007. "On the relationship between environmental management, environmental innovation and patenting: Evidence from German manufacturing firms," Research Policy, Elsevier, vol. 36(10), pages 1587-1602, December.
    22. Frondel, Manuel & Horbach, Jens & Rennings, Klaus, 2008. "What triggers environmental management and innovation? Empirical evidence for Germany," Ecological Economics, Elsevier, vol. 66(1), pages 153-160, May.
    23. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    24. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    25. Borrás, Susana & Edquist, Charles, 2013. "The choice of innovation policy instruments," Technological Forecasting and Social Change, Elsevier, vol. 80(8), pages 1513-1522.
    26. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    27. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    28. Hoppmann, Joern & Peters, Michael & Schneider, Malte & Hoffmann, Volker H., 2013. "The two faces of market support—How deployment policies affect technological exploration and exploitation in the solar photovoltaic industry," Research Policy, Elsevier, vol. 42(4), pages 989-1003.
    29. Bergek, Anna & Berggren, Christian, 2014. "The impact of environmental policy instruments on innovation: A review of energy and automotive industry studies," Ecological Economics, Elsevier, vol. 106(C), pages 112-123.
    30. Lanjouw, Jean O & Pakes, Ariel & Putnam, Jonathan, 1998. "How to Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data," Journal of Industrial Economics, Wiley Blackwell, vol. 46(4), pages 405-432, December.
    31. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    32. Guerzoni, Marco & Raiteri, Emilio, 2015. "Demand-side vs. supply-side technology policies: Hidden treatment and new empirical evidence on the policy mix," Research Policy, Elsevier, vol. 44(3), pages 726-747.
    33. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    34. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2000. "Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not)," NBER Working Papers 7552, National Bureau of Economic Research, Inc.
    35. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    36. Costantini, Valeria & Mazzanti, Massimiliano, 2012. "On the green and innovative side of trade competitiveness? The impact of environmental policies and innovation on EU exports," Research Policy, Elsevier, vol. 41(1), pages 132-153.
    37. Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), 2011. "Improving Energy Efficiency through Technology," Books, Edward Elgar Publishing, number 3830.
    38. Menanteau, Philippe & Lefebvre, Herve, 2000. "Competing technologies and the diffusion of innovations: the emergence of energy-efficient lamps in the residential sector," Research Policy, Elsevier, vol. 29(3), pages 375-389, March.
    39. Jens Horbach & Vanessa Oltra & Jean Belin, 2013. "Determinants and Specificities of Eco-Innovations Compared to Other Innovations--An Econometric Analysis for the French and German Industry Based on the Community Innovation Survey-super-1," Industry and Innovation, Taylor & Francis Journals, vol. 20(6), pages 523-543, August.
    40. Dodgson, Mark & Hughes, Alan & Foster, John & Metcalfe, Stan, 2011. "Systems thinking, market failure, and the development of innovation policy: The case of Australia," Research Policy, Elsevier, vol. 40(9), pages 1145-1156.
    41. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    42. Elena Verdolini & Marzio Galeotti, 2009. "At Home and Abroad: An Empirical Analysis of Innovation and Diffusion in Energy-Efficient Technologies," Working Papers 2009.123, Fondazione Eni Enrico Mattei.
    43. Bleda, Mercedes & del Río, Pablo, 2013. "The market failure and the systemic failure rationales in technological innovation systems," Research Policy, Elsevier, vol. 42(5), pages 1039-1052.
    44. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    45. Nicolas van Zeebroeck & Bruno van Pottelsberghe de la Potterie & Wook Han, 2006. "Issues in measuring the degree of technological specialisation with patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 66(3), pages 481-492, March.
    46. Kemp, René & Pontoglio, Serena, 2011. "The innovation effects of environmental policy instruments — A typical case of the blind men and the elephant?," Ecological Economics, Elsevier, vol. 72(C), pages 28-36.
    47. Rene Kemp & Vanessa Oltra, 2011. "Research Insights and Challenges on Eco-Innovation Dynamics," Industry and Innovation, Taylor & Francis Journals, vol. 18(3), pages 249-253.
    48. Reichardt, Kristin & Rogge, Karoline, 2014. "How the policy mix and its consistency impact innovation: Findings from company case studies on offshore wind in Germany," Working Papers "Sustainability and Innovation" S7/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    49. Cainelli, Giulio & Mazzanti, Massimiliano, 2013. "Environmental innovations in services: Manufacturing–services integration and policy transmissions," Research Policy, Elsevier, vol. 42(9), pages 1595-1604.
    50. Bruno Van Pottelsberghe & Herman Denis & Dominique Guellec, 2001. "Using patent counts for cross-country comparisons of technology output," ULB Institutional Repository 2013/6227, ULB -- Universite Libre de Bruxelles.
    51. Keith Smith, "undated". "New directions in research and technology policy: Identifying the key issues," STEP Report series 199401, The STEP Group, Studies in technology, innovation and economic policy.
    52. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    53. Koen Frenken & Frank Van Oort & Thijs Verburg, 2007. "Related Variety, Unrelated Variety and Regional Economic Growth," Regional Studies, Taylor & Francis Journals, vol. 41(5), pages 685-697.
    54. Nemet, Gregory F. & Kammen, Daniel M., 2007. "U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion," Energy Policy, Elsevier, vol. 35(1), pages 746-755, January.
    55. Mattes, Katharina & Müller, Simon & Jäger, Angela & Weidner, Nadezda & Weißfloch, Ute, 2014. "Adoption and diffusion of renewable energy technologies: Influence of the policy mix in the manufacturing industry," Working Papers "Sustainability and Innovation" S6/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    56. Magro, Edurne & Wilson, James R., 2013. "Complex innovation policy systems: Towards an evaluation mix," Research Policy, Elsevier, vol. 42(9), pages 1647-1656.
    57. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    58. Patrick Sevestre & Laszlo Matyas, 2008. "The Econometrics of Panel Data," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00279977, HAL.
    59. Cristina Chaminade & Charles Esquist, 2010. "Rationales for Public Policy Intervention in the Innovation Process: Systems of Innovation Approach," Chapters, in: Ruud E. Smits & Stefan Kuhlmann & Phillip Shapira (ed.), The Theory and Practice of Innovation Policy, chapter 5, Edward Elgar Publishing.
    60. Quitzow, Rainer, 2015. "Assessing policy strategies for the promotion of environmental technologies: A review of India's National Solar Mission," Research Policy, Elsevier, vol. 44(1), pages 233-243.
    61. Noailly, Joëlle, 2012. "Improving the energy efficiency of buildings: The impact of environmental policy on technological innovation," Energy Economics, Elsevier, vol. 34(3), pages 795-806.
    62. Elvira Uyarra & Kieron Flanagan, 2010. "From Regional Systems of Innovation to Regions as Innovation Policy Spaces," Environment and Planning C, , vol. 28(4), pages 681-695, August.
    63. Arundel, A & Kemp, Rene, 2009. "Measuring eco-innovation," Working Papers 10062, University of Tasmania, Tasmanian School of Business and Economics, revised 30 Aug 2010.
    64. Jean O. Lanjouw & Ariel Pakes & Jonathan Putnam, 1998. "How to Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data," Journal of Industrial Economics, Wiley Blackwell, vol. 46(4), pages 405-432, December.
    65. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    66. Francesco Quatraro & Francesco Crespi, 2014. "The Economics of Knowledge, Innovation and Systemic Technology Policy," Post-Print halshs-01378619, HAL.
    67. Gaetan de Rassenfosse & Bruno van Pottelsberghe de la Potterie, 2013. "The Role Of Fees In Patent Systems: Theory And Evidence," Journal of Economic Surveys, Wiley Blackwell, vol. 27(4), pages 696-716, September.
    68. Richard G. Newell, 2010. "The role of markets and policies in delivering innovation for climate change mitigation," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 26(2), pages 253-269, Summer.
    69. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    70. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2014. "Policy Inducement Effects in Energy Efficiency Technologies. An Empirical Analysis on the Residential Sector," SEEDS Working Papers 1914, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
    71. Jeroen C.J.M. van den Bergh & Albert Faber & Annemarth M. Idenburg & Frans H. Oosterhuis, 2007. "Evolutionary Economics and Environmental Policy," Books, Edward Elgar Publishing, number 12511.
    72. Nill, Jan & Kemp, Ren, 2009. "Evolutionary approaches for sustainable innovation policies: From niche to paradigm?," Research Policy, Elsevier, vol. 38(4), pages 668-680, May.
    73. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    74. Noailly, Joëlle & Batrakova, Svetlana, 2010. "Stimulating energy-efficient innovations in the Dutch building sector: Empirical evidence from patent counts and policy lessons," Energy Policy, Elsevier, vol. 38(12), pages 7803-7817, December.
    75. Smith, Adrian & Voß, Jan-Peter & Grin, John, 2010. "Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges," Research Policy, Elsevier, vol. 39(4), pages 435-448, May.
    76. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    77. C. Lanier Benkard, 2000. "Learning and Forgetting: The Dynamics of Aircraft Production," American Economic Review, American Economic Association, vol. 90(4), pages 1034-1054, September.
    78. Mowery, David C. & Nelson, Richard R. & Martin, Ben R., 2010. "Technology policy and global warming: Why new policy models are needed (or why putting new wine in old bottles won't work)," Research Policy, Elsevier, vol. 39(8), pages 1011-1023, October.
    79. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    80. del Río González, Pablo & Hernández, Félix, 2007. "How do energy & environmental policy goals and instruments affect electricity demand? A framework for the analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2006-2031, December.
    81. Ruud E. Smits & Stefan Kuhlmann & Phillip Shapira (ed.), 2010. "The Theory and Practice of Innovation Policy," Books, Edward Elgar Publishing, number 4181.
    82. Malerba, Franco & Orsenigo, Luigi, 1996. "The Dynamics and Evolution of Industries," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 5(1), pages 51-87.
    83. Flanagan, Kieron & Uyarra, Elvira & Laranja, Manuel, 2011. "Reconceptualising the 'policy mix' for innovation," Research Policy, Elsevier, vol. 40(5), pages 702-713, June.
    84. Requate, Till, 2005. "Dynamic incentives by environmental policy instruments--a survey," Ecological Economics, Elsevier, vol. 54(2-3), pages 175-195, August.
    85. Horbach, Jens, 2008. "Determinants of environmental innovation--New evidence from German panel data sources," Research Policy, Elsevier, vol. 37(1), pages 163-173, February.
    86. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    87. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    88. Mariagrazia Squicciarini & Hélène Dernis & Chiara Criscuolo, 2013. "Measuring Patent Quality: Indicators of Technological and Economic Value," OECD Science, Technology and Industry Working Papers 2013/3, OECD Publishing.
    89. Kesidou, Effie & Demirel, Pelin, 2012. "On the drivers of eco-innovations: Empirical evidence from the UK," Research Policy, Elsevier, vol. 41(5), pages 862-870.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo Signorelli & Anna Odone & Stefano Capolongo & Maddalena Buffoli & Marcello Tirani & Denis Grasso & Edoardo Croci, 2016. "Maintenance and efficiency of heating systems to reduce air pollution: Evaluation of a community-based campaign to change energy behaviors in an Italian province," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2016(3), pages 89-98.
    2. Giovanni Marin & Alessandro Palma, 2015. "Technology invention and diffusion in residential energy consumption. A stochastic frontier approach," IEFE Working Papers 81, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    3. Cantner, Uwe & Graf, Holger & Herrmann, Johannes & Kalthaus, Martin, 2016. "Inventor networks in renewable energies: The influence of the policy mix in Germany," Research Policy, Elsevier, vol. 45(6), pages 1165-1184.
    4. Joelle Noailly, 2022. "Directing innovation towards a low-carbon future," WIPO Economic Research Working Papers 72, World Intellectual Property Organization - Economics and Statistics Division.
    5. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    6. Sonal Khurana & Sunil Luthra & Abid Haleem & Anil Kumar & Bisma Mannan, 2022. "Can sustainability be achieved through sustainable oriented innovation practices? Empirical evidence of micro, small and medium scale manufacturing enterprises," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1591-1615, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    2. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2014. "Policy Inducement Effects in Energy Efficiency Technologies. An Empirical Analysis on the Residential Sector," SEEDS Working Papers 1914, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
    3. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    4. Costantini, Valeria & Crespi, Francesco & Paglialunga, Elena & Sforna, Giorgia, 2020. "System transition and structural change processes in the energy efficiency of residential sector: Evidence from EU countries," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 309-329.
    5. Giovanni Marin & Alessandro Palma, 2015. "Technology invention and diffusion in residential energy consumption. A stochastic frontier approach," IEFE Working Papers 81, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    6. Ghisetti, Claudia & Marzucchi, Alberto & Montresor, Sandro, 2015. "The open eco-innovation mode. An empirical investigation of eleven European countries," Research Policy, Elsevier, vol. 44(5), pages 1080-1093.
    7. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    8. Fabrizi, Andrea & Guarini, Giulio & Meliciani, Valentina, 2018. "Green patents, regulatory policies and research network policies," Research Policy, Elsevier, vol. 47(6), pages 1018-1031.
    9. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
    10. Gianluca ORSATTI, 2019. "Public R&D and green knowledge diffusion:\r\nEvidence from patent citation data," Cahiers du GREThA (2007-2019) 2019-17, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    11. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    12. Cantner, Uwe & Graf, Holger & Herrmann, Johannes & Kalthaus, Martin, 2016. "Inventor networks in renewable energies: The influence of the policy mix in Germany," Research Policy, Elsevier, vol. 45(6), pages 1165-1184.
    13. Ghisetti, Claudia & Pontoni, Federico, 2015. "Investigating policy and R&D effects on environmental innovation: A meta-analysis," Ecological Economics, Elsevier, vol. 118(C), pages 57-66.
    14. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    15. Nicolò Barbieri & Claudia Ghisetti & Marianna Gilli & Giovanni Marin & Francesco Nicolli, 2016. "A Survey Of The Literature On Environmental Innovation Based On Main Path Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 596-623, July.
    16. Rogge, Karoline S. & Schleich, Joachim, 2018. "Do policy mix characteristics matter for low-carbon innovation? A survey-based exploration of renewable power generation technologies in Germany," Research Policy, Elsevier, vol. 47(9), pages 1639-1654.
    17. Kim, Yeong Jae & Brown, Marilyn, 2019. "Impact of domestic energy-efficiency policies on foreign innovation: The case of lighting technologies," Energy Policy, Elsevier, vol. 128(C), pages 539-552.
    18. Dechezlepretre, Antoine & Perkins, Richard & Neumayer, Eric, 2012. "Regulatory Distance and the Transfer of New Environmentally Sound Technologies: Evidence from the Automobile Sector," Climate Change and Sustainable Development 128199, Fondazione Eni Enrico Mattei (FEEM).
    19. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    20. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.

    More about this item

    Keywords

    eco-innovation; policy mix; policy spillovers; energy efficiency; residential sector.;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:srt:wpaper:1115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alessandro Palma (email available below). General contact details of provider: http://www.sustainability-seeds.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.