IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v41y2012i1p116-131.html
   My bibliography  Save this article

Bottom-up estimation of industrial and public R&D investment by technology in support of policy-making: The case of selected low-carbon energy technologies

Author

Listed:
  • Wiesenthal, Tobias
  • Leduc, Guillaume
  • Haegeman, Karel
  • Schwarz, Hans-Günther

Abstract

This paper discusses a bottom-up approach to estimate the level of R&D investment by technology in areas where data are scarce. It develops a four-step methodology for the estimation of corporate R&D investments at technology level. This approach can overcome gaps in existing data by combining publicly available information in a novel way, even though it introduces some uncertainty. This is illustrated for a set of low-carbon energy technologies that were identified as key for meeting Europe's long-term energy and climate objectives by the European Strategic Energy Technology Plan. The paper finds that the aggregated R&D investments dedicated to these technologies amounted to €3.3billion in the EU in 2007, including public funding from European Union Member States and at EU-level, and industrial research activities from companies with headquarters registered in the EU. The results allow conclusions on the European energy research policy to be drawn, such as the dominance of industrial funds, and have provided significant input to the European policy making in this field. The paper ends with suggestions on how to further enhance the accuracy of the approach and how to widen its application to other sectors.

Suggested Citation

  • Wiesenthal, Tobias & Leduc, Guillaume & Haegeman, Karel & Schwarz, Hans-Günther, 2012. "Bottom-up estimation of industrial and public R&D investment by technology in support of policy-making: The case of selected low-carbon energy technologies," Research Policy, Elsevier, vol. 41(1), pages 116-131.
  • Handle: RePEc:eee:respol:v:41:y:2012:i:1:p:116-131
    DOI: 10.1016/j.respol.2011.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733311001648
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Beeck, Nicole & Doukas, Haris & Gioria, Michel & Karakosta, Charikleia & Psarras, John, 2009. "Energy RTD expenditures in the European union: Data gathering procedures and results towards a scientific reference system," Applied Energy, Elsevier, vol. 86(4), pages 452-459, April.
    2. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    3. Nemet, Gregory F. & Kammen, Daniel M., 2007. "U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion," Energy Policy, Elsevier, vol. 35(1), pages 746-755, January.
    4. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters,in: R&D and Productivity: The Econometric Evidence, pages 287-343 National Bureau of Economic Research, Inc.
    5. Sagar, Ambuj D. & van der Zwaan, Bob, 2006. "Technological innovation in the energy sector: R&D, deployment, and learning-by-doing," Energy Policy, Elsevier, vol. 34(17), pages 2601-2608, November.
    6. Sagar, A. D. & Holdren, J. P., 2002. "Assessing the global energy innovation system: some key issues," Energy Policy, Elsevier, vol. 30(6), pages 465-469, May.
    7. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    8. repec:fth:harver:1473 is not listed on IDEAS
    9. Ernst, Holger, 1998. "Industrial research as a source of important patents," Research Policy, Elsevier, vol. 27(1), pages 1-15, May.
    10. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    11. Margolis, Robert M. & Kammen, Daniel M., 1999. "Evidence of under-investment in energy R&D in the United States and the impact of Federal policy," Energy Policy, Elsevier, vol. 27(10), pages 575-584, October.
    12. Karsten Neuhoff, 2005. "Large-Scale Deployment of Renewables for Electricity Generation," Oxford Review of Economic Policy, Oxford University Press, vol. 21(1), pages 88-110, Spring.
    13. Tobias Wiesenthal & Guillaume Leduc & Hans-Gunther Schwarz & Karel Haegeman, 2009. "RandD Investment in the Priority Technologies of the European Strategic Energy Technology Plan," JRC Working Papers JRC52225, Joint Research Centre (Seville site).
    14. Jamasb, Tooraj & Pollitt, Michael, 2008. "Liberalisation and R&D in network industries: The case of the electricity industry," Research Policy, Elsevier, vol. 37(6-7), pages 995-1008, July.
    15. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    16. Freeman, Christopher & Soete, Luc, 2009. "Developing science, technology and innovation indicators: What we can learn from the past," Research Policy, Elsevier, vol. 38(4), pages 583-589, May.
    17. Robert W. Fri, 2003. "The Role of Knowledge: Technological Innovation in the Energy System," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 51-74.
    18. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    19. Neef, H.-J., 2009. "International overview of hydrogen and fuel cell research," Energy, Elsevier, vol. 34(3), pages 327-333.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Teresa Costa-Campi & Néstor Duch-Brown & José García-Quevedo, 2016. "Innovation strategies of energy firms," Working Papers 2016/28, Institut d'Economia de Barcelona (IEB).
    2. Shouro Dasgupta & Enrica De Cian & Elena Verdolini, 2016. "The political economy of energy innovation," WIDER Working Paper Series 017, World Institute for Development Economic Research (UNU-WIDER).
    3. Patricia Laurens & Christian Bas & Antoine Schoen & Stéphane Lhuillery, 2016. "Technological contribution of MNEs to the growth of energy-greentech sector in the early post-Kyoto period," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(2), pages 169-191, April.
    4. Ales Gnamus, 2011. "Capacities Map 2011 - Update on the R&D Investments in Three Selected Priority Technologies of the European Strategic Energy Technology Plan: Wind, PV and CSP," JRC Working Papers JRC67437, Joint Research Centre (Seville site).
    5. Brutschin, Elina & Fleig, Andreas, 2016. "Innovation in the energy sector – The role of fossil fuels and developing economies," Energy Policy, Elsevier, vol. 97(C), pages 27-38.
    6. Viktor Prokop & Jan Stejskal, 2015. "Determinants of machinery firms' innovation activity - case study from the Czech Republic," ERSA conference papers ersa15p1111, European Regional Science Association.
    7. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
    8. Dong, Andy & Sarkar, Somwrita, 2015. "Forecasting technological progress potential based on the complexity of product knowledge," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 599-610.
    9. Francesco Pasimeni & Alessandro Fiorini & Aliki Georgakaki, 2018. "Patent-based Estimation Procedure of Private R&D: The Case of Climate Change and Mitigation Technologies in Europe," SPRU Working Paper Series 2018-06, SPRU - Science and Technology Policy Research, University of Sussex.
    10. Lu, Chao & Liu, Hu-Chen & Tao, Jie & Rong, Ke & Hsieh, Ying-Che, 2017. "A key stakeholder-based financial subsidy stimulation for Chinese EV industrialization: A system dynamics simulation," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 1-14.
    11. Wiesenthal, Tobias & Condeço-Melhorado, Ana & Leduc, Guillaume, 2015. "Innovation in the European transport sector: A review," Transport Policy, Elsevier, vol. 42(C), pages 86-93.
    12. repec:eee:tefoso:v:122:y:2017:i:c:p:49-62 is not listed on IDEAS
    13. Raphael Calel, 2018. "Adopt or Innovate: Understanding Technological Responses to Cap-and-Trade," CESifo Working Paper Series 6847, CESifo Group Munich.
    14. Sung, Bongsuk, 2015. "Public policy supports and export performance of bioenergy technologies: A dynamic panel approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 477-495.
    15. Raphael Bointner & Simon Pezzutto & Gianluca Grilli & Wolfram Sparber, 2016. "Financing Innovations for the Renewable Energy Transition in Europe," Energies, MDPI, Open Access Journal, vol. 9(12), pages 1-16, November.
    16. repec:eco:journ2:2017-02-23 is not listed on IDEAS
    17. repec:fan:efeefe:v:html10.3280/efe2016-002006 is not listed on IDEAS
    18. Karel Haegeman & Mark Boden & Totti Konnola, 2012. "Challenges in transnational research programming: the role of NETWATCH," JRC Working Papers JRC71938, Joint Research Centre (Seville site), revised Aug 2012.
    19. Raphael Bointner & Simon Pezzutto & Wolfram Sparber, 2016. "Scenarios of public energy research and development expenditures: financing energy innovation in Europe," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 470-488, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:41:y:2012:i:1:p:116-131. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/respol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.