IDEAS home Printed from https://ideas.repec.org/p/cpb/discus/223.html
   My bibliography  Save this paper

Innovation policy for directing technical change in the power sector

Author

Listed:
  • Rob Aalbers

    (CPB Netherlands Bureau for Economic Policy Analysis)

  • Victoria Shestalova
  • Viktoria Kocsis

Abstract

This paper discusses policy instruments for redirecting technical change within the electricity sector to mitigate climate change. First, we unravel the mechanism behind directed technical change, explaining why markets may underprovide innovations in expensive renewable technologies in comparison to innovations in energy-efficient fossil-fuel generators. Subsequently, we characterize technical change in electricity generation technologies, stressing the heterogeneity of knowledge spillovers both within and between clean electricity generation technologies. We argue that there exists a rationale for a portfolio approach to innovation in the electricity sector, i.e., optimal innovation policies are neither fully generic nor fully specific; and they need to be adapted, in response to new information learned by the government. The existing innovation literature does not, however, provide a clear-cut answer for designing such a policy. We compare policy instruments and argue that public R&D support to clean technologies, either in the form of subsidies or prizes, seems to be the prime candidate for implementing non-generic innovation policy.

Suggested Citation

  • Rob Aalbers & Victoria Shestalova & Viktoria Kocsis, 2012. "Innovation policy for directing technical change in the power sector," CPB Discussion Paper 223, CPB Netherlands Bureau for Economic Policy Analysis.
  • Handle: RePEc:cpb:discus:223
    as

    Download full text from publisher

    File URL: https://www.cpb.nl/sites/default/files/publicaties/download/cpb-discussion-paper-223-innovation-policy-directing-technical-change-power-sector.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan-Pablo Montero, 2011. "End of the line: A Note on Environmental Policy and Innovation when Governments cannot Commit," Documentos de Trabajo 394, Instituto de Economia. Pontificia Universidad Católica de Chile..
    2. Montero, Juan Pablo, 2011. "A note on environmental policy and innovation when governments cannot commit," Energy Economics, Elsevier, vol. 33(S1), pages 13-19.
    3. Jerry R. Green & Suzanne Scotchmer, 1995. "On the Division of Profit in Sequential Innovation," RAND Journal of Economics, The RAND Corporation, vol. 26(1), pages 20-33, Spring.
    4. Daron Acemoglu, 2011. "Diversity and Technological Progress," NBER Chapters, in: The Rate and Direction of Inventive Activity Revisited, pages 319-356, National Bureau of Economic Research, Inc.
    5. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    6. Lovely, Mary & Popp, David, 2011. "Trade, technology, and the environment: Does access to technology promote environmental regulation?," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 16-35, January.
    7. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    8. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    9. Dekker, Thijs & Vollebergh, Herman R.J. & de Vries, Frans P. & Withagen, Cees A., 2012. "Inciting protocols," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 45-67.
    10. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    11. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    12. James Bessen & Robert M. Hunt, 2007. "An Empirical Look at Software Patents," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 16(1), pages 157-189, March.
    13. Elisa Lanzi & Ivan Haščič & Nick Johnstone, 2012. "The Determinants of Invention in Electricity Generation Technologies: A Patent Data Analysis," OECD Environment Working Papers 45, OECD Publishing.
    14. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    15. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    16. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
    17. Carl Shapiro, 2001. "Navigating the Patent Thicket: Cross Licenses, Patent Pools, and Standard Setting," NBER Chapters, in: Innovation Policy and the Economy, Volume 1, pages 119-150, National Bureau of Economic Research, Inc.
    18. Tooraj Jamasb, 2007. "Technical Change Theory and Learning Curves: Patterns of Progress in Electricity Generation Technologies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 51-72.
    19. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    20. V. Kerry Smith, 2008. "Reflections on the Literature," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(1), pages 130-145, Winter.
    21. Kahouli, Sondès, 2011. "Re-examining uranium supply and demand: New insights," Energy Policy, Elsevier, vol. 39(1), pages 358-376, January.
    22. Josh Lerner & Jean Tirole, 2004. "Efficient Patent Pools," American Economic Review, American Economic Association, vol. 94(3), pages 691-711, June.
    23. Requate, Till, 2005. "Dynamic incentives by environmental policy instruments--a survey," Ecological Economics, Elsevier, vol. 54(2-3), pages 175-195, August.
    24. Grubb,Michael & Jamasb,Tooraj & Pollitt,Michael G. (ed.), 2008. "Delivering a Low Carbon Electricity System," Cambridge Books, Cambridge University Press, number 9780521888844.
    25. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    26. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    27. Laffont, Jean-Jacques & Tirole, Jean, 1996. "Pollution permits and environmental innovation," Journal of Public Economics, Elsevier, vol. 62(1-2), pages 127-140, October.
    28. Bovenberg, A Lans & Smulders, Sjak A, 1996. "Transitional Impacts of Environmental Policy in an Endogenous Growth Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(4), pages 861-893, November.
    29. Lucas W. Davis, 2012. "Prospects for Nuclear Power," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 49-66, Winter.
    30. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    31. Martin L. Weitzman, 1974. "Prices vs. Quantities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(4), pages 477-491.
    32. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    33. José Moraga-González & Noemi Padrón-Fumero, 2002. "Environmental Policy in a Green Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(3), pages 419-447, July.
    34. Lans Bovenberg, A. & Smulders, Sjak, 1995. "Environmental quality and pollution-augmenting technological change in a two-sector endogenous growth model," Journal of Public Economics, Elsevier, vol. 57(3), pages 369-391, July.
    35. Pugh, Graham & Clarke, Leon & Marlay, Robert & Kyle, Page & Wise, Marshall & McJeon, Haewon & Chan, Gabriel, 2011. "Energy R&D portfolio analysis based on climate change mitigation," Energy Economics, Elsevier, vol. 33(4), pages 634-643, July.
    36. Popp, David & Newell, Richard, 2012. "Where does energy R&D come from? Examining crowding out from energy R&D," Energy Economics, Elsevier, vol. 34(4), pages 980-991.
    37. Ryan L. Lampe & Petra Moser, 2012. "Do Patent Pools Encourage Innovation? Evidence from 20 U.S. Industries under the New Deal," NBER Working Papers 18316, National Bureau of Economic Research, Inc.
    38. James Bessen & Eric Maskin, 2009. "Sequential innovation, patents, and imitation," RAND Journal of Economics, RAND Corporation, vol. 40(4), pages 611-635, December.
    39. Steffen Brunner & Christian Flachsland & Robert Marschinski, 2012. "Credible commitment in carbon policy," Climate Policy, Taylor & Francis Journals, vol. 12(2), pages 255-271, March.
    40. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
    41. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
    42. Golombek Rolf & Greaker Mads & Hoel Michael, 2010. "Carbon Taxes and Innovation without Commitment," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-21, April.
    43. Jean-Jacques Laffont & Jean Tirole, 1993. "A Theory of Incentives in Procurement and Regulation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262121743, December.
    44. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    45. Sakakibara, Mariko & Branstetter, Lee, 2001. "Do Stronger Patents Induce More Innovation? Evidence from the 1988 Japanese Patent Law Reforms," RAND Journal of Economics, The RAND Corporation, vol. 32(1), pages 77-100, Spring.
    46. Johannes Bollen & Bruno Guay & Stéphanie Jamet & Jan Corfee-Morlot, 2009. "Co-Benefits of Climate Change Mitigation Policies: Literature Review and New Results," OECD Economics Department Working Papers 693, OECD Publishing.
    47. Newell, Richard & Wilson, Nathan, 2005. "Technology Prizes for Climate Change Mitigation," RFF Working Paper Series dp-05-33, Resources for the Future.
    48. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," CPB Discussion Paper 237, CPB Netherlands Bureau for Economic Policy Analysis.
    49. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    50. James Bessen & Michael J. Meurer, 2008. "Introduction to Patent Failure: How Judges, Bureaucrats, and Lawyers Put Innovators at Risk," Introductory Chapters, in: Patent Failure: How Judges, Bureaucrats, and Lawyers Put Innovators at Risk, Princeton University Press.
    51. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    52. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    53. Arguedas, Carmen & van Soest, Daan P., 2009. "On reducing the windfall profits in environmental subsidy programs," Journal of Environmental Economics and Management, Elsevier, vol. 58(2), pages 192-205, September.
    54. Ryan L. Lampe & Petra Moser, 2011. "Patent Pools and the Direction of Innovation - Evidence from the 19th-century Sewing Machine Industry," NBER Working Papers 17573, National Bureau of Economic Research, Inc.
    55. Wright, Brian Davern, 1983. "The Economics of Invention Incentives: Patents, Prizes, and Research Contracts," American Economic Review, American Economic Association, vol. 73(4), pages 691-707, September.
    56. Anonymous, 2009. "Abstract of the discussion," British Actuarial Journal, Cambridge University Press, vol. 15(1), pages 202-217, March.
    57. Yi Qian, 2007. "Do National Patent Laws Stimulate Domestic Innovation in a Global Patenting Environment? A Cross-Country Analysis of Pharmaceutical Patent Protection, 1978-2002," The Review of Economics and Statistics, MIT Press, vol. 89(3), pages 436-453, August.
    58. Suzanne Scotchmer, 1991. "Standing on the Shoulders of Giants: Cumulative Research and the Patent Law," Journal of Economic Perspectives, American Economic Association, vol. 5(1), pages 29-41, Winter.
    59. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," Working Papers 2013.34, Fondazione Eni Enrico Mattei.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    2. Victoria Shestalova & Chiara Criscuolo & Nick Johnstone & Carlo Menon, 2014. "Renewable energy policies and cross-border investment: evidence from M&A in solar and wind energy," CPB Discussion Paper 288, CPB Netherlands Bureau for Economic Policy Analysis.
    3. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    4. Joëlle Noailly & Victoria Shestalova, 2013. "Knowledge spillovers from renewable energy technologies, Lessons from patent citations," CPB Discussion Paper 262, CPB Netherlands Bureau for Economic Policy Analysis.
    5. Newbery, David M., 2016. "Towards a green energy economy? The EU Energy Union’s transition to a low-carbon zero subsidy electricity system – Lessons from the UK’s Electricity Market Reform," Applied Energy, Elsevier, vol. 179(C), pages 1321-1330.
    6. Duch-Brown, Néstor & Costa-Campi, María Teresa, 2015. "The diffusion of patented oil and gas technology with environmental uses: A forward patent citation analysis," Energy Policy, Elsevier, vol. 83(C), pages 267-276.
    7. Resende, Marcelo & Strube, Eduardo & Zeidan, Rodrigo, 2014. "Complementarity of innovation policies in Brazilian industry: An econometric study," International Journal of Production Economics, Elsevier, vol. 158(C), pages 9-17.
    8. Joelle Noailly & Victoria Shestalova, 2013. "Knowledge Spillovers from Renewable energy Technologies, Lessons from patent citations," CIES Research Paper series 22-2013, Centre for International Environmental Studies, The Graduate Institute.
    9. Viktória Kocsis & Bert Hof, 2016. "Energy policy evaluation in practice: the case of production subsidies and DEN-B in the Netherlands," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(5), pages 1433-1455, October.
    10. Duch-Brown, Néstor & Costa-Campi, María Teresa, 2015. "The diffusion of patented oil and gas technology with environmental uses: A forward patent citation analysis," Energy Policy, Elsevier, vol. 83(C), pages 267-276.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    2. Oscar Afonso & Ana Catarina Afonso, 2015. "Endogenous Growth Effects of Environmental Policies," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 62(5), pages 607-629, December.
    3. Joëlle Noailly & Victoria Shestalova, 2013. "Knowledge spillovers from renewable energy technologies, Lessons from patent citations," CPB Discussion Paper 262, CPB Netherlands Bureau for Economic Policy Analysis.
    4. Rockett, Katharine, 2010. "Property Rights and Invention," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 315-380, Elsevier.
    5. Shiell, Leslie & Lyssenko, Nikita, 2014. "Climate policy and induced R&D: How great is the effect?," Energy Economics, Elsevier, vol. 46(C), pages 279-294.
    6. Schmidt, Robert C. & Marschinski, Robert, 2009. "A model of technological breakthrough in the renewable energy sector," Ecological Economics, Elsevier, vol. 69(2), pages 435-444, December.
    7. Joelle Noailly & Victoria Shestalova, 2013. "Knowledge Spillovers from Renewable energy Technologies, Lessons from patent citations," CIES Research Paper series 22-2013, Centre for International Environmental Studies, The Graduate Institute.
    8. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    9. Gerlagh, Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2014. "The optimal time path of clean energy R&D policy when patents have finite lifetime," Journal of Environmental Economics and Management, Elsevier, vol. 67(1), pages 2-19.
    10. Elizabeth Baldwin, Yongyang Cai, Karlygash Kuralbayeva, 2018. "To build or not to build? Capital stocks and climate policy," GRI Working Papers 290, Grantham Research Institute on Climate Change and the Environment.
    11. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    12. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    13. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    14. Raphael Calel, 2020. "Adopt or Innovate: Understanding Technological Responses to Cap-and-Trade," American Economic Journal: Economic Policy, American Economic Association, vol. 12(3), pages 170-201, August.
    15. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    16. Gerlagh , Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2008. "Linking Environmental and Innovation Policy," Memorandum 10/2008, Oslo University, Department of Economics.
    17. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    18. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    19. Bronwyn H. Hall, 2009. "Business And Financial Method Patents, Innovation, And Policy," Scottish Journal of Political Economy, Scottish Economic Society, vol. 56(4), pages 443-473, September.
    20. Nancy Gallini, 2011. "Private agreements for coordinating patent rights: the case of patent pools," ECONOMIA E POLITICA INDUSTRIALE, FrancoAngeli Editore, vol. 2011(3), pages 5-30.

    More about this item

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpb:discus:223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cpbgvnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.