IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

A review of learning rates for electricity supply technologies

Listed author(s):
  • Rubin, Edward S.
  • Azevedo, Inês M.L.
  • Jaramillo, Paulina
  • Yeh, Sonia

A variety of mathematical models have been proposed to characterize and quantify the dependency of electricity supply technology costs on various drivers of technological change. The most prevalent model form, called a learning curve, or experience curve, is a log-linear equation relating the unit cost of a technology to its cumulative installed capacity or electricity generated. This one-factor model is also the most common method used to represent endogenous technical change in large-scale energy-economic models that inform energy planning and policy analysis. A characteristic parameter is the “learning rate,” defined as the fractional reduction in cost for each doubling of cumulative production or capacity. In this paper, a literature review of the learning rates reported for 11 power generation technologies employing an array of fossil fuels, nuclear, and renewable energy sources is presented. The review also includes multi-factor models proposed for some energy technologies, especially two-factor models relating cost to cumulative expenditures for research and development (R&D) as well as the cumulative installed capacity or electricity production of a technology. For all technologies studied, we found substantial variability (as much as an order of magnitude) in reported learning rates across different studies. Such variability is not readily explained by systematic differences in the time intervals, geographic regions, choice of independent variable, or other parameters of each study. This uncertainty in learning rates, together with other limitations of current learning curve formulations, suggests the need for much more careful and systematic examination of the influence of how different factors and assumptions affect policy-relevant outcomes related to the future choice and cost of electricity supply and other energy technologies.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0301421515002293
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Energy Policy.

Volume (Year): 86 (2015)
Issue (Month): C ()
Pages: 198-218

as
in new window

Handle: RePEc:eee:enepol:v:86:y:2015:i:c:p:198-218
DOI: 10.1016/j.enpol.2015.06.011
Contact details of provider: Web page: http://www.elsevier.com/locate/enpol

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
  2. Paul Joskow & Nancy L. Rose, 1985. "The Effects of Technological Change, Experience, and Environmental Regulation on the Construction Cost of Coal-Burning Generating Units," RAND Journal of Economics, The RAND Corporation, vol. 16(1), pages 1-17, Spring.
  3. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
  4. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
  5. Colpier, Ulrika Claeson & Cornland, Deborah, 2002. "The economics of the combined cycle gas turbine--an experience curve analysis," Energy Policy, Elsevier, vol. 30(4), pages 309-316, March.
  6. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
  7. Tooraj Jamasb, 2007. "Technical Change Theory and Learning Curves: Patterns of Progress in Electricity Generation Technologies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 51-72.
  8. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
  9. Hayward, Jennifer A. & Graham, Paul W., 2013. "A global and local endogenous experience curve model for projecting future uptake and cost of electricity generation technologies," Energy Economics, Elsevier, vol. 40(C), pages 537-548.
  10. Ibenholt, Karin, 2002. "Explaining learning curves for wind power," Energy Policy, Elsevier, vol. 30(13), pages 1181-1189, October.
  11. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
  12. Grubler, Arnulf, 2010. "The costs of the French nuclear scale-up: A case of negative learning by doing," Energy Policy, Elsevier, vol. 38(9), pages 5174-5188, September.
  13. van der Zwaan, Bob & Rabl, Ari, 2004. "The learning potential of photovoltaics: implications for energy policy," Energy Policy, Elsevier, vol. 32(13), pages 1545-1554, September.
  14. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 70(1), pages 65-94.
  15. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
  16. McNerney, James & Doyne Farmer, J. & Trancik, Jessika E., 2011. "Historical costs of coal-fired electricity and implications for the future," Energy Policy, Elsevier, vol. 39(6), pages 3042-3054, June.
  17. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
  18. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
  19. Trappey, Amy J.C. & Trappey, Charles V. & Liu, Penny H.Y. & Lin, Lee-Cheng & Ou, Jerry J.R., 2013. "A hierarchical cost learning model for developing wind energy infrastructures," International Journal of Production Economics, Elsevier, vol. 146(2), pages 386-391.
  20. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
  21. Duke, Richard & Williams, Robert & Payne, Adam, 2005. "Accelerating residential PV expansion: demand analysis for competitive electricity markets," Energy Policy, Elsevier, vol. 33(15), pages 1912-1929, October.
  22. Rubin, Edward S. & Yeh, Sonia & Antes, Matt & Berkenpas, Michael & Davison, John, 2007. "Use of experience curves to estimate the future cost of power plants with CO2 capture," Institute of Transportation Studies, Working Paper Series qt46x6h0n0, Institute of Transportation Studies, UC Davis.
  23. William D. Nordhaus, 2009. "The Perils of the Learning Model For Modeling Endogenous Technological Change," NBER Working Papers 14638, National Bureau of Economic Research, Inc.
  24. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
  25. Kobos, Peter H. & Erickson, Jon D. & Drennen, Thomas E., 2006. "Technological learning and renewable energy costs: implications for US renewable energy policy," Energy Policy, Elsevier, vol. 34(13), pages 1645-1658, September.
  26. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
  27. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
  28. Watanabe, Chihiro, 1995. "Identification of the role of renewable energy," Renewable Energy, Elsevier, vol. 6(3), pages 237-274.
  29. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
  30. Seel, Joachim & Barbose, Galen L. & Wiser, Ryan H., 2014. "An analysis of residential PV system price differences between the United States and Germany," Energy Policy, Elsevier, vol. 69(C), pages 216-226.
  31. Ferioli, F. & Schoots, K. & van der Zwaan, B.C.C., 2009. "Use and limitations of learning curves for energy technology policy: A component-learning hypothesis," Energy Policy, Elsevier, vol. 37(7), pages 2525-2535, July.
  32. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
  33. Kenneth J. Arrow, 1962. "The Economic Implications of Learning by Doing," Review of Economic Studies, Oxford University Press, vol. 29(3), pages 155-173.
  34. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
  35. Steven Klepper & Kenneth L. Simons, 2000. "The Making of an Oligopoly: Firm Survival and Technological Change in the Evolution of the U.S. Tire Industry," Journal of Political Economy, University of Chicago Press, vol. 108(4), pages 728-760, August.
  36. Enrica De Cian & Valentina Bosetti & Alessandra Sgobbi & Massimo Tavoni, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Working Papers 2009.85, Fondazione Eni Enrico Mattei.
  37. Hettinga, W.G. & Junginger, H.M. & Dekker, S.C. & Hoogwijk, M. & McAloon, A.J. & Hicks, K.B., 2009. "Understanding the reductions in US corn ethanol production costs: An experience curve approach," Energy Policy, Elsevier, vol. 37(1), pages 190-203, January.
  38. Jamasb, T. & Köhler, J., 2007. "Learning Curves For Energy Technology and Policy Analysis: A Critical Assessment," Cambridge Working Papers in Economics 0752, Faculty of Economics, University of Cambridge.
  39. Nikolaos Kouvaritakis & Antonio Soria & Stephane Isoard, 2000. "Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 104-115.
  40. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
  41. Ostwald, Phillip F. & Reisdorf, John B., 1979. "Measurement of technology progress and capital cost for nuclear, coal-fired, and gas-fired power plants using the learning curve," Engineering and Process Economics, Elsevier, vol. 4(4), pages 435-454, December.
  42. Junginger, Martin & de Visser, Erika & Hjort-Gregersen, Kurt & Koornneef, Joris & Raven, Rob & Faaij, Andre & Turkenburg, Wim, 2006. "Technological learning in bioenergy systems," Energy Policy, Elsevier, vol. 34(18), pages 4024-4041, December.
  43. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
  44. C. Harmon, 2000. "Experience Curves of Photovoltaic Technology," Working Papers ir00014, International Institute for Applied Systems Analysis.
  45. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
  46. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
  47. Arthur van Benthem & Kenneth Gillingham & James Sweeney, 2008. "Learning-by-Doing and the Optimal Solar Policy in California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 131-152.
  48. Miketa, Asami & Schrattenholzer, Leo, 2004. "Experiments with a methodology to model the role of R&D expenditures in energy technology learning processes; first results," Energy Policy, Elsevier, vol. 32(15), pages 1679-1692, October.
  49. Patrik Söderholm & Ger Klaassen, 2007. "Wind Power in Europe: A Simultaneous Innovation–Diffusion Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(2), pages 163-190, February.
  50. Riahi, Keywan & Rubin, Edward S. & Taylor, Margaret R. & Schrattenholzer, Leo & Hounshell, David, 2004. "Technological learning for carbon capture and sequestration technologies," Energy Economics, Elsevier, vol. 26(4), pages 539-564, July.
  51. Clarke, Leon & Weyant, John & Edmonds, Jae, 2008. "On the sources of technological change: What do the models assume," Energy Economics, Elsevier, vol. 30(2), pages 409-424, March.
  52. Gavin Sinclair & Steven Klepper & Wesley Cohen, 2000. "What's Experience Got to Do With It? Sources of Cost Reduction in a Large Specialty Chemicals Producer," Management Science, INFORMS, vol. 46(1), pages 28-45, January.
  53. Li, Sheng & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2012. "Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies," Applied Energy, Elsevier, vol. 93(C), pages 348-356.
  54. Schilling, Melissa A. & Esmundo, Melissa, 2009. "Technology S-curves in renewable energy alternatives: Analysis and implications for industry and government," Energy Policy, Elsevier, vol. 37(5), pages 1767-1781, May.
  55. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
  56. Jonathan Kohler, Michael Grubb, David Popp and Ottmar Edenhofer, 2006. "The Transition to Endogenous Technical Change in Climate-Economy Models: A Technical Overview to the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 17-56.
  57. Cohen, Wesley M & Klepper, Steven, 1996. "Firm Size and the Nature of Innovation within Industries: The Case of Process and Product R&D," The Review of Economics and Statistics, MIT Press, vol. 78(2), pages 232-243, May.
  58. Clarke, Leon & Weyant, John & Birky, Alicia, 2006. "On the sources of technological change: Assessing the evidence," Energy Economics, Elsevier, vol. 28(5-6), pages 579-595, November.
  59. Qiu, Yueming & Anadon, Laura D., 2012. "The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization," Energy Economics, Elsevier, vol. 34(3), pages 772-785.
  60. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:86:y:2015:i:c:p:198-218. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.