IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A review of uncertainties in technology experience curves

  • Yeh, Sonia
  • Rubin, Edward S.

The use of log-linear experience curves (or learning curves) relating reductions in the unit cost of technologies to their cumulative production or installed capacity has become a common method of representing endogenous technical change in energy-economic models used for policy analysis. Yet, there are significant uncertainties in such formulations whose impact on key model results have been insufficiently examined or considered. This paper reviews the major types of uncertainty in log-linear experience curves and their effect on projected rates of cost reduction. Uncertainties are found not only in the learning rate parameter of a log-linear model, but also in the functional form that determines the shape of an experience curve. Evidence for alternative forms such as an S-shaped curve is reviewed along with case studies that demonstrate the uncertainties associated with cost increases during early commercialization of a technology—a phenomena that is widely recognized but rarely quantified or incorporated in learning models. Additional factors discussed include the effects of learning discontinuities, institutional forgetting, and the influence of social, economic and political factors. We then review other models of causality, which aim to improve modelers’ ability to explain and predict the influence of other underlying processes that contribute to technology cost reductions in addition to learning. Ignoring other types of underlying mechanisms can create a false sense of precision and overestimate the true contribution of learning. Currently, however, uncertainties in such multi-factor models remain large due to the difficulties of estimating key parameters (such as private-sector R&D investments) and extending models of a specific technology to a broader suite of technologies and cost projections. Pending the development and validation of more robust models of technological change, we suggest ways to significantly improve the characterization and reporting of current learning model uncertainties and their impacts on the results of energy-economic models to help reduce the potential for drawing inappropriate or erroneous policy conclusions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0140988311002805
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Energy Economics.

Volume (Year): 34 (2012)
Issue (Month): 3 ()
Pages: 762-771

as
in new window

Handle: RePEc:eee:eneeco:v:34:y:2012:i:3:p:762-771
Contact details of provider: Web page: http://www.elsevier.com/locate/eneco

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Yeh, Sonia & Rubin, Edward, 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt4xn4w7rn, Institute of Transportation Studies, UC Davis.
  2. Ad Seebregts & Tom Kram & Gerrit Jan Schaeffer & Alexandra Bos, 2000. "Endogenous learning and technology clustering: analysis with MARKAL model of the Western European energy system," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 289-319.
  3. Neij, Lena, 1997. "Use of experience curves to analyse the prospects for diffusion and adoption of renewable energy technology," Energy Policy, Elsevier, vol. 25(13), pages 1099-1107, November.
  4. Sturm, Roland, 1993. "Nuclear power in Eastern Europe : Learning or forgetting curves?," Energy Economics, Elsevier, vol. 15(3), pages 183-189, July.
  5. James G. Hewlett, 1996. "Economic and Regulatory Factors Affecting the Maintenance of Nucleaer Power Plants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-31.
  6. Gillingham, Kenneth T. & Newell, Richard G. & Pizer, William A., 2007. "Modeling Endogenous Technological Change for Climate Policy Analysis," Discussion Papers dp-07-14, Resources For the Future.
  7. Rebecca Achee Thornton & Peter Thompson, 2001. "Learning from Experience and Learning from Others: An Exploration of Learning and Spillovers in Wartime Shipbuilding," American Economic Review, American Economic Association, vol. 91(5), pages 1350-1368, December.
  8. William D. Nordhaus, 2009. "The Perils of the Learning Model For Modeling Endogenous Technological Change," NBER Working Papers 14638, National Bureau of Economic Research, Inc.
  9. Papineau, Maya, 2006. "An economic perspective on experience curves and dynamic economies in renewable energy technologies," Energy Policy, Elsevier, vol. 34(4), pages 422-432, March.
  10. Tooraj Jamasb, 2007. "Technical Change Theory and Learning Curves: Patterns of Progress in Electricity Generation Technologies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 51-72.
  11. Rubin, Edward S. & Yeh, Sonia & Antes, Matt & Berkenpas, Michael & Davison, John, 2007. "Use of experience curves to estimate the future cost of power plants with CO2 capture," Institute of Transportation Studies, Working Paper Series qt46x6h0n0, Institute of Transportation Studies, UC Davis.
  12. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
  13. Ferioli, F. & Schoots, K. & van der Zwaan, B.C.C., 2009. "Use and limitations of learning curves for energy technology policy: A component-learning hypothesis," Energy Policy, Elsevier, vol. 37(7), pages 2525-2535, July.
  14. Alan Manne & Richard Richels, 1992. "Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits," MIT Press Books, The MIT Press, edition 1, volume 1, number 026213280x, June.
  15. Bass, Frank M, 1980. "The Relationship between Diffusion Rates, Experience Curves, and Demand Elasticities for Consumer Durable Technological Innovations," The Journal of Business, University of Chicago Press, vol. 53(3), pages S51-67, July.
  16. Hettinga, W.G. & Junginger, H.M. & Dekker, S.C. & Hoogwijk, M. & McAloon, A.J. & Hicks, K.B., 2009. "Understanding the reductions in US corn ethanol production costs: An experience curve approach," Energy Policy, Elsevier, vol. 37(1), pages 190-203, January.
  17. Steven Klepper & Kenneth L. Simons, 2000. "The Making of an Oligopoly: Firm Survival and Technological Change in the Evolution of the U.S. Tire Industry," Journal of Political Economy, University of Chicago Press, vol. 108(4), pages 728-760, August.
  18. Neij, L, 1999. "Cost dynamics of wind power," Energy, Elsevier, vol. 24(5), pages 375-389.
  19. Patrik Söderholm & Ger Klaassen, 2007. "Wind Power in Europe: A Simultaneous Innovation–Diffusion Model," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 36(2), pages 163-190, February.
  20. Ostwald, Phillip F. & Reisdorf, John B., 1979. "Measurement of technology progress and capital cost for nuclear, coal-fired, and gas-fired power plants using the learning curve," Engineering and Process Economics, Elsevier, vol. 4(4), pages 435-454, December.
  21. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
  22. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
  23. Olivier Bahn, Socrates Kypreos, 2003. "Incorporating different endogenous learning formulations in MERGE," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 19(4), pages 333-358.
  24. Clarke, Leon & Weyant, John & Birky, Alicia, 2006. "On the sources of technological change: Assessing the evidence," Energy Economics, Elsevier, vol. 28(5-6), pages 579-595, November.
  25. Argote, L. & Epple, D., 1990. "Learning Curves In Manufacturing," GSIA Working Papers 89-90-02, Carnegie Mellon University, Tepper School of Business.
  26. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
  27. Gavin Sinclair & Steven Klepper & Wesley Cohen, 2000. "What's Experience Got to Do With It? Sources of Cost Reduction in a Large Specialty Chemicals Producer," Management Science, INFORMS, vol. 46(1), pages 28-45, January.
  28. Junginger, Martin & de Visser, Erika & Hjort-Gregersen, Kurt & Koornneef, Joris & Raven, Rob & Faaij, Andre & Turkenburg, Wim, 2006. "Technological learning in bioenergy systems," Energy Policy, Elsevier, vol. 34(18), pages 4024-4041, December.
  29. Messner, S. & Golodnikov, A. & Gritsevskii, A., 1996. "A stochastic version of the dynamic linear programming model MESSAGE III," Energy, Elsevier, vol. 21(9), pages 775-784.
  30. Colpier, Ulrika Claeson & Cornland, Deborah, 2002. "The economics of the combined cycle gas turbine--an experience curve analysis," Energy Policy, Elsevier, vol. 30(4), pages 309-316, March.
  31. Ibenholt, Karin, 2002. "Explaining learning curves for wind power," Energy Policy, Elsevier, vol. 30(13), pages 1181-1189, October.
  32. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
  33. Fischer, Carolyn & Newell, Richard, 2004. "Environmental and Technology Policies for Climate Mitigation," Discussion Papers dp-04-05, Resources For the Future.
  34. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
  35. Rao, Anand B. & Rubin, Edward S. & Keith, David W. & Granger Morgan, M., 2006. "Evaluation of potential cost reductions from improved amine-based CO2 capture systems," Energy Policy, Elsevier, vol. 34(18), pages 3765-3772, December.
  36. Riahi, Keywan & Rubin, Edward S. & Taylor, Margaret R. & Schrattenholzer, Leo & Hounshell, David, 2004. "Technological learning for carbon capture and sequestration technologies," Energy Economics, Elsevier, vol. 26(4), pages 539-564, July.
  37. Cantor, Robin & Hewlett, James, 1988. "The economics of nuclear power : Further evidence on learning, economies of scale, and regulatory effects," Resources and Energy, Elsevier, vol. 10(4), pages 315-335, December.
  38. Yeh, Sonia & Rubin, Edward S. & Taylor, Margaret R., 2007. "Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies," Institute of Transportation Studies, Working Paper Series qt5nv9p7zh, Institute of Transportation Studies, UC Davis.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:34:y:2012:i:3:p:762-771. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.