IDEAS home Printed from https://ideas.repec.org/p/cpb/discus/262.html
   My bibliography  Save this paper

Knowledge spillovers from renewable energy technologies, Lessons from patent citations

Author

Listed:
  • Joëlle Noailly
  • Victoria Shestalova

Abstract

This paper studies the knowledge spillovers generated by renewable-energy technologies, unraveling the technological fields that benefit from knowledge developed in storage, solar, wind, marine, hydropower, geothermal, waste and biomass energy technologies. A CPB Background Document accompanies this CPB Discussion Paper. Using citation data of patents in renewable technologies at seventeen European countries over the 1978-2006 period, the analysis examines the relative importance of knowledge flows within the same specific technological field (intra-technology spillovers), to other technologies in the field of power-generation (inter-technology spillovers), and to technologies unrelated to power-generation (external-technology spillovers). The results show significant differences across various renewable technologies. While wind technologies mainly find applications within their own technological field, a large share of innovations in solar energy and storage technologies find applications outside the field of power generation, suggesting that solar technologies are more general and, therefore, may have a higher value for society. Finally, the knowledge from waste and biomass technologies is mainly exploited by fossil-fuel power-generating technologies. The paper discusses the implications of these results for the design of R&D policies for renewable energy innovation.

Suggested Citation

  • Joëlle Noailly & Victoria Shestalova, 2013. "Knowledge spillovers from renewable energy technologies, Lessons from patent citations," CPB Discussion Paper 262, CPB Netherlands Bureau for Economic Policy Analysis.
  • Handle: RePEc:cpb:discus:262
    as

    Download full text from publisher

    File URL: https://www.cpb.nl/sites/default/files/publicaties/download/cpb-discussion-paper-262-knowledge-spillovers-renewable-energy-technologies.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    3. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    4. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    5. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 577-598.
    6. Dekker, Thijs & Vollebergh, Herman R.J. & de Vries, Frans P. & Withagen, Cees A., 2012. "Inciting protocols," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 45-67.
    7. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    8. repec:fth:harver:1473 is not listed on IDEAS
    9. Antoine Dechezleprêtre & Ralf Martin & Myra Mohnen, "undated". "Knowledge spillovers from clean and dirty technologies: a patent citation analysis," SIMPATIC Working Papers 954, Bruegel.
    10. Ricardo J. Caballero & Adam B. Jaffe, 1993. "How High Are the Giants' Shoulders: An Empirical Assessment of Knowledge Spillovers and Creative Destruction in a Model of Economic Growth," NBER Chapters, in: NBER Macroeconomics Annual 1993, Volume 8, pages 15-86, National Bureau of Economic Research, Inc.
    11. Elisa Lanzi & Ivan Haščič & Nick Johnstone, 2012. "The Determinants of Invention in Electricity Generation Technologies: A Patent Data Analysis," OECD Environment Working Papers 45, OECD Publishing.
    12. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    13. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    14. Alcácer, Juan & Gittelman, Michelle & Sampat, Bhaven, 2009. "Applicant and examiner citations in U.S. patents: An overview and analysis," Research Policy, Elsevier, vol. 38(2), pages 415-427, March.
    15. David Popp, 2006. "They Don'T Invent Them Like They Used To: An Examination Of Energy Patent Citations Over Time," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(8), pages 753-776.
    16. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    17. Rob Aalbers & Victoria Shestalova & Viktoria Kocsis, 2012. "Innovation policy for directing technical change in the power sector," CPB Discussion Paper 223, CPB Netherlands Bureau for Economic Policy Analysis.
    18. Schmidt-Ehmcke, Jens & Zloczysti, Petra & Braun, Frauke G, 2010. "Innovative Activity in Wind and Solar Technology: Empirical Evidence on Knowledge Spillovers Using Patent Data," CEPR Discussion Papers 7865, C.E.P.R. Discussion Papers.
    19. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    20. Bas Straathof & Sander van Veldhuizen, 2012. "Market size, institutions, and the value of rights provided by patents," CPB Discussion Paper 226, CPB Netherlands Bureau for Economic Policy Analysis.
    21. Noailly, Joëlle & Smeets, Roger, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," Climate Change and Sustainable Development 148921, Fondazione Eni Enrico Mattei (FEEM).
    22. repec:bre:wpaper:954 is not listed on IDEAS
    23. Lanzi, Elisa & Verdolini, Elena & Haščič, Ivan, 2011. "Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends," Energy Policy, Elsevier, vol. 39(11), pages 7000-7014.
    24. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    25. Popp, David & Newell, Richard, 2012. "Where does energy R&D come from? Examining crowding out from energy R&D," Energy Economics, Elsevier, vol. 34(4), pages 980-991.
    26. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    27. Schoenmakers, Wilfred & Duysters, Geert, 2010. "The technological origins of radical inventions," Research Policy, Elsevier, vol. 39(8), pages 1051-1059, October.
    28. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," CPB Discussion Paper 237, CPB Netherlands Bureau for Economic Policy Analysis.
    29. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    30. Manuel Trajtenberg & Adam B. Jaffe & Michael S. Fogarty, 2000. "Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors," American Economic Review, American Economic Association, vol. 90(2), pages 215-218, May.
    31. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    32. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," Working Papers 2013.34, Fondazione Eni Enrico Mattei.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    2. Lennox, James A. & Witajewski-Baltvilks, Jan, 2017. "Directed technical change with capital-embodied technologies: Implications for climate policy," Energy Economics, Elsevier, vol. 67(C), pages 400-409.
    3. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    4. Geraldine Ang & Dirk Röttgers & Pralhad Burli, 2017. "The empirics of enabling investment and innovation in renewable energy," OECD Environment Working Papers 123, OECD Publishing.
    5. Ion ANTONESCU, 2015. "Premises For Creating The Database And Knowledge Base Of An Expert System For Dynamic Management Of Renewable Energy Resources Under Uncertainty Conditions," THE YEARBOOK OF THE "GH. ZANE" INSTITUTE OF ECONOMIC RESEARCHES, Gheorghe Zane Institute for Economic and Social Research ( from THE ROMANIAN ACADEMY, JASSY BRANCH), vol. 24(1), pages 87-94.
    6. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2016. "Diversity in solar photovoltaic energy: Implications for innovation and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 331-340.
    7. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2016. "The rationales for technology-specific renewable energy support: Conceptual arguments and their relevance for Germany," UFZ Discussion Papers 4/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    8. Maïder SAINT-JEAN & Nabila ARFAOUI & Eric BROUILLAT & David VIRAPIN, 2019. "Mapping technological knowledge patterns: evidence from ocean energy technologies," Cahiers du GREThA 2019-09, Groupe de Recherche en Economie Théorique et Appliquée(GREThA).
    9. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    10. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    11. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2020. "Effectiveness of an ‘open innovation’ approach in renewable energy: Empirical evidence from a survey on solar and wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joelle Noailly & Victoria Shestalova, 2013. "Knowledge Spillovers from Renewable energy Technologies, Lessons from patent citations," CIES Research Paper series 22-2013, Centre for International Environmental Studies, The Graduate Institute.
    2. Joelle Noailly & Victoria Shestalova, 2013. "Knowledge Spillovers from Renewable energy Technologies, Lessons from patent citations," CIES Research Paper series 22-2013, Centre for International Environmental Studies, The Graduate Institute.
    3. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    4. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    5. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    6. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    7. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    8. Gianluca ORSATTI, 2019. "Public R&D and green knowledge diffusion:\r\nEvidence from patent citation data," Cahiers du GREThA (2007-2019) 2019-17, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    9. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    10. Rob Aalbers & Victoria Shestalova & Viktoria Kocsis, 2012. "Innovation policy for directing technical change in the power sector," CPB Discussion Paper 223, CPB Netherlands Bureau for Economic Policy Analysis.
    11. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    12. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    13. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.
    14. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    15. Altwies, Joy E. & Nemet, Gregory F., 2013. "Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology," Energy Policy, Elsevier, vol. 52(C), pages 819-831.
    16. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    17. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    18. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    19. Ufuk Akcigit & William Kerr, 2015. "Growth through Heterogeneous Innovation, Second Version," PIER Working Paper Archive 15-020, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Mar 2015.
    20. Feng Zhang & Guohua Jiang, 2019. "Combination of Complementary Technological Knowledge to Generate “Hard to Imitate” Technologies," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-24, June.

    More about this item

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpb:discus:262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cpbgvnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.