IDEAS home Printed from https://ideas.repec.org/p/zbw/ufzdps/52011.html
   My bibliography  Save this paper

Why should support schemes for renewable electricity complement the EU emissions trading scheme?

Author

Listed:
  • Lehmann, Paul
  • Gawel, Erik

Abstract

In virtually all EU Member States, the EU Emissions Trading Scheme (EU ETS) is complemented by support schemes for electricity generation from renewable energy sources (RES-E). This policy mix has been subject to strong criticism. It is mainly argued that RES-E schemes contribute nothing to emissions reduction and undermine the cost-effectiveness of the EU ETS. Consequently, many scholars suggest the abolition of RES-E schemes. However, this conclusion rests on quite narrow and unrealistic assumptions about the design and performance of markets and policies. This article provides a systematic and comprehensive review and discussion of possible rationales for combining the EU ETS with RES-E support schemes. The first and most important reason may be restrictions to technology development and adoption. These may be attributed to the failure of markets as well as policies, and more generally to the path dependency in socio-technical systems. Under these conditions, RES-E schemes are required to reach sufficient levels of technology development. In addition, it is highlighted that in contrast to the EU ETS RES-E support schemes may provide benefits beyond mitigating climate change.

Suggested Citation

  • Lehmann, Paul & Gawel, Erik, 2011. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," UFZ Discussion Papers 5/2011, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
  • Handle: RePEc:zbw:ufzdps:52011
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/48674/1/664248985.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Heyes, Anthony & Heyes, Catherine, 2000. "An empirical analysis of the Nuclear Liability Act (1970) in Canada," Resource and Energy Economics, Elsevier, vol. 22(1), pages 91-101, January.
    2. David Pearce, 2003. "The Social Cost of Carbon and its Policy Implications," Oxford Review of Economic Policy, Oxford University Press, vol. 19(3), pages 362-384.
    3. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    4. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    5. Carsten Helm & Anja Schöttner, 2008. "Subsidizing Technological Innovations in the Presence of R&D Spillovers," German Economic Review, Verein für Socialpolitik, vol. 9(3), pages 339-353, August.
    6. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    7. Lehmann, Paul, 2009. "Climate Policies with Pollution Externalities and Learning Spillovers," MPRA Paper 21353, University Library of Munich, Germany.
    8. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    9. Fischer, Carolyn, 2008. "Emissions pricing, spillovers, and public investment in environmentally friendly technologies," Energy Economics, Elsevier, vol. 30(2), pages 487-502, March.
    10. Snorre Kverndokk & Knut Rosendahl & Thomas Rutherford, 2004. "Climate Policies and Induced Technological Change: Which to Choose, the Carrot or the Stick?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 27(1), pages 21-41, January.
    11. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    12. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    13. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    14. Unger, Thomas & Ahlgren, Erik O., 2005. "Impacts of a common green certificate market on electricity and CO2-emission markets in the Nordic countries," Energy Policy, Elsevier, vol. 33(16), pages 2152-2163, November.
    15. Richard Green, 2005. "Electricity and Markets," Oxford Review of Economic Policy, Oxford University Press, vol. 21(1), pages 67-87, Spring.
    16. Salvador Barrios & Eric Strobl, 2004. "Learning by Doing and Spillovers: Evidence from Firm-Level Panel Data," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 25(2), pages 175-203, June.
    17. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    18. Parry, Ian W. H., 1995. "Optimal pollution taxes and endogenous technological progress," Resource and Energy Economics, Elsevier, vol. 17(1), pages 69-85, May.
    19. Jørgen Hansen & Camilla Jensen & Erik Madsen, 2003. "The establishment of the danish windmill industry—Was it worthwhile?," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 139(2), pages 324-347, June.
    20. Fischer, Carolyn & Preonas, Louis, 2010. "Combining Policies for Renewable Energy: Is the Whole Less Than the Sum of Its Parts?," International Review of Environmental and Resource Economics, now publishers, vol. 4(1), pages 51-92, June.
    21. De Jonghe, Cedric & Delarue, Erik & Belmans, Ronnie & D'haeseleer, William, 2009. "Interactions between measures for the support of electricity from renewable energy sources and CO2 mitigation," Energy Policy, Elsevier, vol. 37(11), pages 4743-4752, November.
    22. Samuel Fankhauser & Cameron Hepburn & Jisung Park, 2010. "Combining Multiple Climate Policy Instruments: How Not To Do It," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 209-225.
    23. Abrell, Jan & Weigt, Hannes, 2008. "The Interaction of Emissions Trading and Renewable Energy Promotion," MPRA Paper 65658, University Library of Munich, Germany.
    24. Grubb, Michael & Chapuis, Thierry & Duong, Minh Ha, 1995. "The economics of changing course : Implications of adaptability and inertia for optimal climate policy," Energy Policy, Elsevier, vol. 23(4-5), pages 417-431.
    25. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    26. Bernstein, Jeffrey I. & Mohnen, Pierre, 1998. "International R&D spillovers between U.S. and Japanese R&D intensive sectors," Journal of International Economics, Elsevier, vol. 44(2), pages 315-338, April.
    27. Margolis, Robert M. & Kammen, Daniel M., 1999. "Evidence of under-investment in energy R&D in the United States and the impact of Federal policy," Energy Policy, Elsevier, vol. 27(10), pages 575-584, October.
    28. Argote, L. & Epple, D., 1990. "Learning Curves In Manufacturing," GSIA Working Papers 89-90-02, Carnegie Mellon University, Tepper School of Business.
    29. Karsten Neuhoff, 2005. "Large-Scale Deployment of Renewables for Electricity Generation," Oxford Review of Economic Policy, Oxford University Press, vol. 21(1), pages 88-110, Spring.
    30. Philippe Aghion & Mathias Dewatripont & Patrick Rey, 1999. "Competition, Financial Discipline and Growth," Review of Economic Studies, Oxford University Press, vol. 66(4), pages 825-852.
    31. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    32. Patrik Söderholm & Ger Klaassen, 2007. "Wind Power in Europe: A Simultaneous Innovation–Diffusion Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(2), pages 163-190, February.
    33. Lipp, Judith, 2007. "Lessons for effective renewable electricity policy from Denmark, Germany and the United Kingdom," Energy Policy, Elsevier, vol. 35(11), pages 5481-5495, November.
    34. Mansfield, Edwin, 1985. "How Rapidly Does New Industrial Technology Leak Out?," Journal of Industrial Economics, Wiley Blackwell, vol. 34(2), pages 217-223, December.
    35. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.
    36. Schmidt, Robert C. & Marschinski, Robert, 2009. "A model of technological breakthrough in the renewable energy sector," Ecological Economics, Elsevier, vol. 69(2), pages 435-444, December.
    37. Otto, Vincent M. & Löschel, Andreas & Reilly, John, 2008. "Directed technical change and differentiation of climate policy," Energy Economics, Elsevier, vol. 30(6), pages 2855-2878, November.
    38. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    39. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    40. Hintermann, Beat, 2010. "Allowance price drivers in the first phase of the EU ETS," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 43-56, January.
    41. Pablo Río & Xavier Labandeira, 2009. "Barriers to the introduction of market-based instruments in climate policies: an integrated theoretical framework," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 10(1), pages 41-68, March.
    42. Gene M. Grossman & Elhanan Helpman, 1991. "Quality Ladders and Product Cycles," The Quarterly Journal of Economics, Oxford University Press, vol. 106(2), pages 557-586.
    43. Hall, Bronwyn H. & Mairesse, Jacques & Mohnen, Pierre, 2010. "Measuring the Returns to R&D," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1033-1082, Elsevier.
    44. Lehr, Ulrike & Nitsch, Joachim & Kratzat, Marlene & Lutz, Christian & Edler, Dietmar, 2008. "Renewable energy and employment in Germany," Energy Policy, Elsevier, vol. 36(1), pages 108-117, January.
    45. Paul L. Joskow, 2008. "Lessons Learned from Electricity Market Liberalization," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 9-42.
    46. Philippe Menanteau & Dominique Finon & Marie-Laure Lamy, 2003. "Prices versus quantities :environmental policies for promoting the development of renewable energy," Post-Print halshs-00480457, HAL.
    47. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
    48. Schmidt-Ehmcke, Jens & Zloczysti, Petra & Braun, Frauke G, 2010. "Innovative Activity in Wind and Solar Technology: Empirical Evidence on Knowledge Spillovers Using Patent Data," CEPR Discussion Papers 7865, C.E.P.R. Discussion Papers.
    49. Morthorst, P. E., 2001. "Interactions of a tradable green certificate market with a tradable permits market," Energy Policy, Elsevier, vol. 29(5), pages 345-353, April.
    50. Lori Bennear & Robert Stavins, 2007. "Second-best theory and the use of multiple policy instruments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 111-129, May.
    51. Carraro, Carlo & Duval, Romain & Bosetti, Valentina & Tavoni, Massimo, 2010. "What Should we Expect from Innovation? A Model-Based Assessment of the Environmental and Mitigation Cost Implications of Climat," CEPR Discussion Papers 7751, C.E.P.R. Discussion Papers.
    52. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M., 2008. "Germany's solar cell promotion: Dark clouds on the horizon," Energy Policy, Elsevier, vol. 36(11), pages 4198-4204, November.
    53. Pablo Del R�O, 2009. "Interactions between climate and energy policies: the case of Spain," Climate Policy, Taylor & Francis Journals, vol. 9(2), pages 119-138, January.
    54. Claudia Kettner & Angela Köppl & Stefan Schleicher, 2010. "The EU Emission Trading Scheme. Insights from the First Trading Years with a Focus on Price Volatility," WIFO Working Papers 368, WIFO.
    55. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    56. Bye Brita & Faehn Taran & Grünfeld Leo A., 2011. "Growth and Innovation Policy in a Small, Open Economy: Should You Stimulate Domestic R&D or Exports?," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-41, July.
    57. Paul Lehmann, 2012. "Justifying A Policy Mix For Pollution Control: A Review Of Economic Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 26(1), pages 71-97, February.
    58. Martin B. Zimmerman, 1982. "Learning Effects and the Commercialization of New Energy Technologies: The Case of Nuclear Power," Bell Journal of Economics, The RAND Corporation, vol. 13(2), pages 297-310, Autumn.
    59. Boots, M., 2003. "Green certificates and carbon trading in the Netherlands," Energy Policy, Elsevier, vol. 31(1), pages 43-50, January.
    60. Richard K. Lester & Mark J. McCabe, 1993. "The Effect of Industrial Structure on Learning by Doing in Nuclear Power Plant Operation," RAND Journal of Economics, The RAND Corporation, vol. 24(3), pages 418-438, Autumn.
    61. Christoph Böhringer & Knut Einar Rosendahl, 2011. "Greening Electricity More Than Necessary: On the Cost Implications of Overlapping Regulation in EU Climate Policy," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 131(3), pages 469-492.
    62. Hans-Werner Sinn, 2009. "The Green Paradox," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 10(03), pages 10-13, October.
    63. Geroski, P A, 1990. "Innovation, Technological Opportunity, and Market Structure," Oxford Economic Papers, Oxford University Press, vol. 42(3), pages 586-602, July.
    64. Rüdiger Pethig & Christian Wittlich, 2009. "Interaction of Carbon Reduction and Green Energy Promotion in a Small Fossil-Fuel Importing Economy," CESifo Working Paper Series 2749, CESifo.
    65. repec:dau:papers:123456789/2570 is not listed on IDEAS
    66. Harald Rohracher, 2008. "Energy systems in transition: contributions from social sciences," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 9(2/3), pages 144-161.
    67. Milliman, Scott R. & Prince, Raymond, 1989. "Firm incentives to promote technological change in pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 17(3), pages 247-265, November.
    68. Rathmann, M., 2007. "Do support systems for RES-E reduce EU-ETS-driven electricity prices?," Energy Policy, Elsevier, vol. 35(1), pages 342-349, January.
    69. Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
    70. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
    71. Regina Betz & Misato Sato, 2006. "Emissions trading: lessons learnt from the 1st phase of the EU ETS and prospects for the 2nd phase," Climate Policy, Taylor & Francis Journals, vol. 6(4), pages 351-359, July.
    72. Emilie Alberola & Julien Chevallier, 2009. "European Carbon Prices and Banking Restrictions: Evidence from Phase I (2005-2007)," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 51-80.
    73. Bläsi, Albrecht & Requate, Till, 2007. "Subsidies for Wind Power: Surfing down the Learning Curve?," Economics Working Papers 2007-28, Christian-Albrechts-University of Kiel, Department of Economics.
    74. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    75. repec:zbw:rwipos:010 is not listed on IDEAS
    76. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
    77. Morthorst, P. E., 2003. "National environmental targets and international emission reduction instruments," Energy Policy, Elsevier, vol. 31(1), pages 73-83, January.
    78. Jos Sijm & Karsten Neuhoff & Yihsu Chen, 2006. "CO 2 cost pass-through and windfall profits in the power sector," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 49-72, January.
    79. Menanteau, Philippe & Finon, Dominique & Lamy, Marie-Laure, 2003. "Prices versus quantities: choosing policies for promoting the development of renewable energy," Energy Policy, Elsevier, vol. 31(8), pages 799-812, June.
    80. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626, National Bureau of Economic Research, Inc.
    81. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    82. Arthur van Benthem & Kenneth Gillingham & James Sweeney, 2008. "Learning-by-Doing and the Optimal Solar Policy in California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 131-152.
    83. Bronwyn H. Hall & Nathan Rosenberg (ed.), 2010. "Handbook of the Economics of Innovation," Handbook of the Economics of Innovation, Elsevier, edition 1, volume 1, number 1.
    84. Jos Sijm, 2005. "The interaction between the EU emissions trading scheme and national energy policies," Climate Policy, Taylor & Francis Journals, vol. 5(1), pages 79-96, January.
    85. Irwin, Douglas A & Klenow, Peter J, 1994. "Learning-by-Doing Spillovers in the Semiconductor Industry," Journal of Political Economy, University of Chicago Press, vol. 102(6), pages 1200-1227, December.
    86. ., 1998. "Technological Change," Chapters, in: Heinz D. Kurz & Neri Salvadori (ed.), The Elgar Companion to Classical Economics, volume 0, chapter 127, Edward Elgar Publishing.
    87. repec:zbw:rwirep:0040 is not listed on IDEAS
    88. Christoph Böhringer & Knut Rosendahl, 2010. "Green promotes the dirtiest: on the interaction between black and green quotas in energy markets," Journal of Regulatory Economics, Springer, vol. 37(3), pages 316-325, June.
    89. Paul Lehmann & Felix Creutzig & Melf-Hinrich Ehlers & Nele Friedrichsen & Clemens Heuson & Lion Hirth & Robert Pietzcker, 2012. "Carbon Lock-Out: Advancing Renewable Energy Policy in Europe," Energies, MDPI, vol. 5(2), pages 1-32, February.
    90. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    91. Neij, Lena, 1997. "Use of experience curves to analyse the prospects for diffusion and adoption of renewable energy technology," Energy Policy, Elsevier, vol. 25(13), pages 1099-1107, November.
    92. Pedro Linares & Francisco Javier Santos & Mariano Ventosa, 2008. "Coordination of carbon reduction and renewable energy support policies," Climate Policy, Taylor & Francis Journals, vol. 8(4), pages 377-394, July.
    93. Hindsberger, Magnus & Nybroe, Malene Hein & Ravn, Hans F. & Schmidt, Rune, 2003. "Co-existence of electricity, TEP, and TGC markets in the Baltic Sea Region," Energy Policy, Elsevier, vol. 31(1), pages 85-96, January.
    94. Golombek Rolf & Greaker Mads & Hoel Michael, 2010. "Carbon Taxes and Innovation without Commitment," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-21, April.
    95. Gan, Lin & Eskeland, Gunnar S. & Kolshus, Hans H., 2007. "Green electricity market development: Lessons from Europe and the US," Energy Policy, Elsevier, vol. 35(1), pages 144-155, January.
    96. Steven Sorrell, 2003. "Carbon Trading in the Policy Mix," Oxford Review of Economic Policy, Oxford University Press, vol. 19(3), pages 420-437.
    97. Joan Canton & Åsa Johannesson Lindén, 2010. "Support schemes for renewable electricity in the EU," European Economy - Economic Papers 2008 - 2015 408, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    98. Nickell, Stephen J, 1996. "Competition and Corporate Performance," Journal of Political Economy, University of Chicago Press, vol. 104(4), pages 724-746, August.
    99. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    100. Harmelink, Mirjam & Voogt, Monique & Cremer, Clemens, 2006. "Analysing the effectiveness of renewable energy supporting policies in the European Union," Energy Policy, Elsevier, vol. 34(3), pages 343-351, February.
    101. Hillebrand, Bernhard & Buttermann, Hans Georg & Behringer, Jean Marc & Bleuel, Michaela, 2006. "The expansion of renewable energies and employment effects in Germany," Energy Policy, Elsevier, vol. 34(18), pages 3484-3494, December.
    102. Steve Sorrell, 2003. "Interactions between the EU Emissions Trading Scheme and the UK Renewables Obligation and Energy Efficiency Commitment," Energy & Environment, , vol. 14(5), pages 677-703, September.
    103. Enzensberger, N. & Wietschel, M. & Rentz, O., 2002. "Policy instruments fostering wind energy projects--a multi-perspective evaluation approach," Energy Policy, Elsevier, vol. 30(9), pages 793-801, July.
    104. Wei, Max & Patadia, Shana & Kammen, Daniel M., 2010. "Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?," Energy Policy, Elsevier, vol. 38(2), pages 919-931, February.
    105. Cathrine Hagem, 2010. "Promoting renewables and discouraging fossil energy consumption in the European Union," Discussion Papers 610, Statistics Norway, Research Department.
    106. Isoard, Stephane & Soria, Antonio, 2001. "Technical change dynamics: evidence from the emerging renewable energy technologies," Energy Economics, Elsevier, vol. 23(6), pages 619-636, November.
    107. Fouquet, Doerte & Johansson, Thomas B., 2008. "European renewable energy policy at crossroads--Focus on electricity support mechanisms," Energy Policy, Elsevier, vol. 36(11), pages 4079-4092, November.
    108. Nikolaos Kouvaritakis & Antonio Soria & Stephane Isoard, 2000. "Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 104-115.
    109. Golombek Rolf & Hoel Michael, 2006. "Second-Best Climate Agreements and Technology Policy," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 6(1), pages 1-30, January.
    110. Carsten Helm & Anja Schöttner, 2008. "Subsidizing Technological Innovations in the Presence of R&D Spillovers," German Economic Review, Verein für Socialpolitik, vol. 9(3), pages 339-353, August.
    111. Keppler, Jan Horst & Cruciani, Michel, 2010. "Rents in the European power sector due to carbon trading," Energy Policy, Elsevier, vol. 38(8), pages 4280-4290, August.
    112. Frondel, Manuel & Schmidt, Christoph M., 2006. "Emissionshandel und Erneuerbare-Energien-Gesetz: Eine notwendige Koexistenz?," RWI Positionen 10, RWI - Leibniz-Institut für Wirtschaftsforschung.
    113. Jensen, Stine Grenaa & Skytte, Klaus, 2003. "Simultaneous attainment of energy goals by means of green certificates and emission permits," Energy Policy, Elsevier, vol. 31(1), pages 63-71, January.
    114. Kverndokk, Snorre & Rosendahl, Knut Einar, 2007. "Climate policies and learning by doing: Impacts and timing of technology subsidies," Resource and Energy Economics, Elsevier, vol. 29(1), pages 58-82, January.
    115. Thure Traber & Claudia Kemfert, 2009. "Impacts of the German Support for Renewable Energy on Electricity Prices, Emissions, and Firms," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 155-178.
    116. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    117. Michael Grubb & David Ulph, 2002. "Energy, the Environment, and Innovation," Oxford Review of Economic Policy, Oxford University Press, vol. 18(1), pages 92-106, Spring.
    118. Cédric Philibert, 2011. "Interactions of Policies for Renewable Energy and Climate," IEA Energy Papers 2011/6, OECD Publishing.
    119. Marvin B. Lieberman, 1984. "The Learning Curve and Pricing in the Chemical Processing Industries," RAND Journal of Economics, The RAND Corporation, vol. 15(2), pages 213-228, Summer.
    120. Grubb, Michael, 1997. "Technologies, energy systems and the timing of CO2 emissions abatement : An overview of economic issues," Energy Policy, Elsevier, vol. 25(2), pages 159-172, February.
    121. Pablo Río & Xavier Labandeira, 2009. "Barriers to the introduction of market-based instruments in climate policies: an integrated theoretical framework," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 10(1), pages 41-68, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.
    2. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    3. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    4. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    5. Tilmann Rave & Ursula Triebswetter & Johann Wackerbauer, 2013. "Koordination von Innovations-, Energie- und Umweltpolitik," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 61, March.
    6. Paul Lehmann & Felix Creutzig & Melf-Hinrich Ehlers & Nele Friedrichsen & Clemens Heuson & Lion Hirth & Robert Pietzcker, 2012. "Carbon Lock-Out: Advancing Renewable Energy Policy in Europe," Energies, MDPI, vol. 5(2), pages 1-32, February.
    7. Fischer, Carolyn & Preonas, Louis, 2010. "Combining Policies for Renewable Energy: Is the Whole Less Than the Sum of Its Parts?," International Review of Environmental and Resource Economics, now publishers, vol. 4(1), pages 51-92, June.
    8. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.
    9. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E. & McJeon, Haewon C., 2015. "Long-term payoffs of near-term low-carbon deployment policies," Energy Policy, Elsevier, vol. 86(C), pages 493-505.
    10. del Río, Pablo, 2017. "Why does the combination of the European Union Emissions Trading Scheme and a renewable energy target makes economic sense?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 824-834.
    11. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.
    12. Pablo Río, 2014. "On evaluating success in complex policy mixes: the case of renewable energy support schemes," Policy Sciences, Springer;Society of Policy Sciences, vol. 47(3), pages 267-287, September.
    13. Lehmann, Paul, 2009. "Climate policies with pollution externalities and learning spillovers," UFZ Discussion Papers 10/2009, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    14. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    15. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    16. Kyunam Kim & Eunnyeong Heo & Yeonbae Kim, 2017. "Dynamic Policy Impacts on a Technological-Change System of Renewable Energy: An Empirical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 205-236, February.
    17. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    18. Reichenbach, Johanna & Requate, Till, 2012. "Subsidies for renewable energies in the presence of learning effects and market power," Resource and Energy Economics, Elsevier, vol. 34(2), pages 236-254.
    19. Jenkins, Jesse D., 2014. "Political economy constraints on carbon pricing policies: What are the implications for economic efficiency, environmental efficacy, and climate policy design?," Energy Policy, Elsevier, vol. 69(C), pages 467-477.
    20. Jägemann, Cosima & Fürsch, Michaela & Hagspiel, Simeon & Nagl, Stephan, 2013. "Decarbonizing Europe's power sector by 2050 — Analyzing the economic implications of alternative decarbonization pathways," Energy Economics, Elsevier, vol. 40(C), pages 622-636.

    More about this item

    Keywords

    EU Emissions Trading System; market failure; path dependency; policy failure; policy mix; renewable energies; subsidies;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ufzdps:52011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/doufzde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.