IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v23y1995i4-5p417-431.html
   My bibliography  Save this article

The economics of changing course : Implications of adaptability and inertia for optimal climate policy

Author

Listed:
  • Grubb, Michael
  • Chapuis, Thierry
  • Duong, Minh Ha

Abstract

This paper reviews evidence that energy technologies and systems adapt over time to accomodate external pressures: that technical innovation and systemic change in the energy sector is largely induced by need, and restrained by potentially large transitional costs. A simple integrated model of optimal greenhouse gas abatement over time is presented, in which the abatement cost depends on both fixed and transitional elements. It is shown that the optimal current response and long-run prospects differ radically between the classical economic case - in which the cost of a given cutback in emissions is fixed exogenously - and the adaptative case - in which the response is ultimately adaptative but heavily constrained by inertia (i.e. low fixed but high transitional costs). If energy systems are indeed to a large degree adaptive, the results demonstrate that as compared with the classical non-adaptive case: long-run stabilization of atmospheric CO2 may be optimal even with moderate damages from climate change; greater near-term abatement efforts are justified; and the cost of a given delay in response may be several times higher. Neglect of the issue of induced technical change and other adaptive responses may invalidate the policy implications drawn from most integrated assessment models developed to date.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Grubb, Michael & Chapuis, Thierry & Duong, Minh Ha, 1995. "The economics of changing course : Implications of adaptability and inertia for optimal climate policy," Energy Policy, Elsevier, vol. 23(4-5), pages 417-431.
  • Handle: RePEc:eee:enepol:v:23:y:1995:i:4-5:p:417-431
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0301-4215(95)90167-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    2. Peter Hoeller & Andrew Dean & Masahiro Hayafuji, 1992. "New Issues, New Results: The OECD's Second Survey of the Macroeconomic Costs of Reducing CO2 Emissions," OECD Economics Department Working Papers 123, OECD Publishing.
    3. Grubb, Michael, 1993. "Policy modelling for climate change : The missing models," Energy Policy, Elsevier, vol. 21(3), pages 203-208, March.
    4. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39, October.
    5. I.O. Walker & Franz Wirl, 1993. "Irreversible Price-Induced Efficiency Improvements: Theory and Empirical Application to Road Transportation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 183-205.
    6. Hourcade, Jean-Charles, 1993. "Modelling long-run scenarios : Methodology lessons from a prospective study on a low CO2 intensive country," Energy Policy, Elsevier, vol. 21(3), pages 309-326, March.
    7. Anderson, Dennis & Bird, Catherine D, 1992. "Carbon Accumulations and Technical Progress--A Simulation Study of Costs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(1), pages 1-29, February.
    8. Dermot Gately, 1993. "The Imperfect Price-Reversibility of World Oil Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 163-182.
    9. Ernst Berndt & Charles Kolstad & Jong-Kun Lee, 1993. "Measuring the Energy Efficiency and Productivity Impacts of Embodied Technical Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 33-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fankhauser, Samuel & Kverndokk, Snorre, 1996. "The global warming game -- Simulations of a CO2-reduction agreement," Resource and Energy Economics, Elsevier, vol. 18(1), pages 83-102, March.
    2. Sentenac-Chemin, Elodie, 2012. "Is the price effect on fuel consumption symmetric? Some evidence from an empirical study," Energy Policy, Elsevier, vol. 41(C), pages 59-65.
    3. Toth, Ferenc L, 1995. "Discounting in integrated assessments of climate change," Energy Policy, Elsevier, vol. 23(4-5), pages 403-409.
    4. Christian Azar, 1999. "Weight Factors in Cost-Benefit Analysis of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 13(3), pages 249-268, April.
    5. Richard S.J. Tol & Samuel Fankhauser & Richard G. Richels & Joel B. Smith, 2000. "How Much Damage Will Climate Change Do? Recent Estimates," Working Papers FNU-2, Research unit Sustainability and Global Change, Hamburg University, revised Sep 2000.
    6. Lester B. Lave & Elena Shevliakova, 1998. "Potential Damages from Climate Changes in the U.S," Energy & Environment, , vol. 9(4), pages 349-363, June.
    7. Tol, Richard S.J., 2006. "The Polluter Pays Principle and Cost-Benefit Analysis of Climate Change: An Application of Fund," Climate Change Modelling and Policy Working Papers 12058, Fondazione Eni Enrico Mattei (FEEM).
    8. A. Patt, 1997. "Economists and Ecologists: Different Frames of Reference for Global Climate Change," Working Papers ir97056, International Institute for Applied Systems Analysis.
    9. Elodie Sentenac-Chemin, 2009. "Is the price effect on fuel consumption symmetric ? Some evidence from an empirical study," Working Papers hal-02469516, HAL.
    10. Fedoseeva, Svetlana & Zeidan, Rodrigo, 2018. "How (a)symmetric is the response of import demand to changes in its determinants? Evidence from European energy imports," Energy Economics, Elsevier, vol. 69(C), pages 379-394.
    11. Tsur, Yacov & Zemel, Amos, 1995. "ON EVENT UNCERTAINTY AND RENEWABLE RESOURCE MANAGEMENT; Proceedings of the 4th Minnesota Padova Conference on Food, Agriculture, and the Environment, September 4-10, 1994, Wayzata, MN," Working Papers 14434, University of Minnesota, Center for International Food and Agricultural Policy.
    12. Sohngen, Brent & Sedjo, Roger A. & Mendelsohn, Robert & Lyon, Kenneth S., 1996. "Analyzing the Economic Impact of Climate Change on Global Timber Markets," Discussion Papers 10462, Resources for the Future.
    13. Mason, Charles F. & Polasky, Stephen & Tarui, Nori, 2017. "Cooperation on climate-change mitigation," European Economic Review, Elsevier, vol. 99(C), pages 43-55.
    14. Kenneth Rødseth & Eirik Romstad, 2014. "Environmental Regulations, Producer Responses, and Secondary Benefits: Carbon Dioxide Reductions Under the Acid Rain Program," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 111-135, September.
    15. Pindyck, Robert S., 2000. "Irreversibilities and the timing of environmental policy," Resource and Energy Economics, Elsevier, vol. 22(3), pages 233-259, July.
    16. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    17. Kram, Tom & Hill, Douglas, 1996. "A multinational model for CO2 reduction : Defining boundaries of future CO2 emissions in nine countries," Energy Policy, Elsevier, vol. 24(1), pages 39-51, January.
    18. Simon Dietz & Nicholas Stern, 2014. "Endogenous growth, convexity of damages and climate risk: how Nordhaus� framework supports deep cuts in carbon emissions," GRI Working Papers 159, Grantham Research Institute on Climate Change and the Environment.
    19. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    20. Makropoulou, Vasiliki & Dotsis, George & Markellos, Raphael N., 2013. "Environmental policy implications of extreme variations in pollutant stock levels and socioeconomic costs," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(4), pages 417-428.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:23:y:1995:i:4-5:p:417-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.