IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p423-d480271.html
   My bibliography  Save this article

The Use of Energy Models in Local Heating Transition Decision Making: Insights from Ten Municipalities in The Netherlands

Author

Listed:
  • Birgit A. Henrich

    (Faculty of Technology, Policy and Management (TPM), Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands
    Department of Strategy and Policy, Netherlands Organisation for Applied Scientific Research TNO, Anna van Buerenplein 1, 2595 DA The Hague, The Netherlands)

  • Thomas Hoppe

    (Faculty of Technology, Policy and Management (TPM), Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands)

  • Devin Diran

    (Department of Strategy and Policy, Netherlands Organisation for Applied Scientific Research TNO, Anna van Buerenplein 1, 2595 DA The Hague, The Netherlands)

  • Zofia Lukszo

    (Faculty of Technology, Policy and Management (TPM), Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands)

Abstract

In 2018, the Dutch national government announced its decision to end natural gas extraction. This decision posed a challenge for local governments (municipalities); they have to organise a heat supply that is natural gas-free. Energy models can decrease the complexity of this challenge, but some challenges hinder their effective use in decision-making. The main research question of this paper is: What are the perceived advantages and limitations of energy models used by municipalities within their data-driven decision-making process concerning the natural-gas free heating transition? To answer this question, literature on energy models, data-driven policy design and modelling practices were reviewed, and based on this, nine propositions were formulated. The propositions were tested by reflecting on data from case studies of ten municipalities, including 21 experts interviews. Results show that all municipalities investigated, use or are planning to use modelling studies to develop planning documents of their own, and that more than half of the municipalities use modelling studies at some point in their local heating projects. Perceived advantages of using energy models were that the modelling process provides perspective for action, financial and socio-economic insights, transparency and legitimacy and means to start useful discussions. Perceived limitations include that models and modelling results were considered too abstract for analysis of local circumstances, not user-friendly and highly complex. All municipalities using modelling studies were found to hire external expertise, indicating that the knowledge and skill level that municipal officials have is insufficient to model independently.

Suggested Citation

  • Birgit A. Henrich & Thomas Hoppe & Devin Diran & Zofia Lukszo, 2021. "The Use of Energy Models in Local Heating Transition Decision Making: Insights from Ten Municipalities in The Netherlands," Energies, MDPI, vol. 14(2), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:423-:d:480271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
    2. Graciela del Carmen Nava Guerrero & Gijsbert Korevaar & Helle Hvid Hansen & Zofia Lukszo, 2019. "Agent-Based Modeling of a Thermal Energy Transition in the Built Environment," Energies, MDPI, vol. 12(5), pages 1-25, March.
    3. Qadrdan, Meysam & Fazeli, Reza & Jenkins, Nick & Strbac, Goran & Sansom, Robert, 2019. "Gas and electricity supply implications of decarbonising heat sector in GB," Energy, Elsevier, vol. 169(C), pages 50-60.
    4. Calderón, Carlos & Underwood, Chris & Yi, Jialiang & Mcloughlin, Adrian & Williams, Brian, 2019. "An area-based modelling approach for planning heating electrification," Energy Policy, Elsevier, vol. 131(C), pages 262-280.
    5. van Beeck, N.M.J.P., 1999. "Classification of Energy Models," Other publications TiSEM 6f2cbb5e-2d53-4be6-a4f9-9, Tilburg University, School of Economics and Management.
    6. Karni Siraganyan & Amarasinghage Tharindu Dasun Perera & Jean-Louis Scartezzini & Dasaraden Mauree, 2019. "Eco-Sim: A Parametric Tool to Evaluate the Environmental and Economic Feasibility of Decentralized Energy Systems," Energies, MDPI, vol. 12(5), pages 1-22, February.
    7. Andrea Herbst & Felipe Andrés Toro & Felix Reitze & Eberhard Jochem, 2012. "Introduction to Energy Systems Modelling," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 111-135, June.
    8. van Beeck, N.M.J.P., 1999. "Classification of Energy Models," Research Memorandum 777, Tilburg University, School of Economics and Management.
    9. Åberg, M. & Henning, D., 2011. "Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings," Energy Policy, Elsevier, vol. 39(12), pages 7839-7852.
    10. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    11. Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
    12. Nakata, Toshihiko & Kubo, Kazuo & Lamont, Alan, 2005. "Design for renewable energy systems with application to rural areas in Japan," Energy Policy, Elsevier, vol. 33(2), pages 209-219, January.
    13. Busch, Jonathan & Roelich, Katy & Bale, Catherine S.E. & Knoeri, Christof, 2017. "Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks," Energy Policy, Elsevier, vol. 100(C), pages 170-180.
    14. Christian Adam & Yves Steinebach & Christoph Knill, 2018. "Neglected challenges to evidence-based policy-making: the problem of policy accumulation," Policy Sciences, Springer;Society of Policy Sciences, vol. 51(3), pages 269-290, September.
    15. Sarbassov, Yerbol & Kerimray, Aiymgul & Tokmurzin, Diyar & Tosato, GianCarlo & De Miglio, Rocco, 2013. "Electricity and heating system in Kazakhstan: Exploring energy efficiency improvement paths," Energy Policy, Elsevier, vol. 60(C), pages 431-444.
    16. Devin Diran & Thomas Hoppe & Jolien Ubacht & Adriaan Slob & Kornelis Blok, 2020. "A Data Ecosystem for Data-Driven Thermal Energy Transition: Reflection on Current Practice and Suggestions for Re-Design," Energies, MDPI, vol. 13(2), pages 1-28, January.
    17. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Vigants, Girts & Blumberga, Dagnija, 2016. "System dynamics model analysis of pathway to 4th generation district heating in Latvia," Energy, Elsevier, vol. 110(C), pages 85-94.
    18. Maya Sopha, Bertha & Klöckner, Christian A. & Hertwich, Edgar G., 2011. "Exploring policy options for a transition to sustainable heating system diffusion using an agent-based simulation," Energy Policy, Elsevier, vol. 39(5), pages 2722-2729, May.
    19. Nässén, Jonas & Holmberg, John, 2013. "On the potential trade-offs between energy supply and end-use technologies for residential heating," Energy Policy, Elsevier, vol. 59(C), pages 470-480.
    20. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    21. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaandorp, Chelsea & Miedema, Tes & Verhagen, Jeroen & van de Giesen, Nick & Abraham, Edo, 2022. "Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation," Applied Energy, Elsevier, vol. 325(C).
    2. Māris Pūķis & Jānis Bičevskis & Staņislavs Gendelis & Edvīns Karnītis & Ģirts Karnītis & Andris Eihmanis & Uģis Sarma, 2023. "Role of Local Governments in Green Deal Multilevel Governance: The Energy Context," Energies, MDPI, vol. 16(12), pages 1-22, June.
    3. Hofbauer, Leonhard & McDowall, Will & Pye, Steve, 2022. "Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Herreras Martínez, Sara & Harmsen, Robert & Menkveld, Marijke & Faaij, André & Kramer, Gert Jan, 2022. "Municipalities as key actors in the heat transition to decarbonise buildings: Experiences from local planning and implementation in a learning context," Energy Policy, Elsevier, vol. 169(C).
    5. Benedetto Nastasi & Massimiliano Manfren & Michel Noussan, 2021. "Open Data and Models for Energy and Environment," Energies, MDPI, vol. 14(15), pages 1-2, July.
    6. Nava-Guerrero, Graciela-del-Carmen & Hansen, Helle Hvid & Korevaar, Gijsbert & Lukszo, Zofia, 2022. "An agent-based exploration of the effect of multi-criteria decisions on complex socio-technical heat transitions," Applied Energy, Elsevier, vol. 306(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
    2. Nava-Guerrero, Graciela-del-Carmen & Hansen, Helle Hvid & Korevaar, Gijsbert & Lukszo, Zofia, 2021. "The effect of group decisions in heat transitions: An agent-based approach," Energy Policy, Elsevier, vol. 156(C).
    3. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    4. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Variable renewable energies and storage development in long term energy modelling tools," Post-Print hal-01279467, HAL.
    5. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    6. Nava-Guerrero, Graciela-del-Carmen & Hansen, Helle Hvid & Korevaar, Gijsbert & Lukszo, Zofia, 2022. "An agent-based exploration of the effect of multi-criteria decisions on complex socio-technical heat transitions," Applied Energy, Elsevier, vol. 306(PB).
    7. Natalia Gennadyevna Zakharchenko & Olga Valeryevna Dyomina, 2015. "Modelling Energy - Economy Interactions: The Far East Experience," Spatial Economics=Prostranstvennaya Ekonomika, Economic Research Institute, Far Eastern Branch, Russian Academy of Sciences (Khabarovsk, Russia), issue 1, pages 62-90.
    8. Herreras Martínez, Sara & Harmsen, Robert & Menkveld, Marijke & Faaij, André & Kramer, Gert Jan, 2022. "Municipalities as key actors in the heat transition to decarbonise buildings: Experiences from local planning and implementation in a learning context," Energy Policy, Elsevier, vol. 169(C).
    9. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    10. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    11. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Fattahi, A. & Sijm, J. & Faaij, A., 2020. "A systemic approach to analyze integrated energy system modeling tools: A review of national models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Marlene Ofelia Sanchez-Escobar & Julieta Noguez & Jose Martin Molina-Espinosa & Rafael Lozano-Espinosa & Genoveva Vargas-Solar, 2021. "The Contribution of Bottom-Up Energy Models to Support Policy Design of Electricity End-Use Efficiency for Residential Buildings and the Residential Sector: A Systematic Review," Energies, MDPI, vol. 14(20), pages 1-28, October.
    14. Thomas Pregger & Tobias Naegler & Wolfgang Weimer-Jehle & Sigrid Prehofer & Wolfgang Hauser, 2020. "Moving towards socio-technical scenarios of the German energy transition—lessons learned from integrated energy scenario building," Climatic Change, Springer, vol. 162(4), pages 1743-1762, October.
    15. Ramachandra, T.V., 2009. "RIEP: Regional integrated energy plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 285-317, February.
    16. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2018. "Effects of energy efficiency measures in district-heated buildings on energy supply," Energy, Elsevier, vol. 142(C), pages 1114-1127.
    17. Georgopoulou, E. & Mirasgedis, S. & Sarafidis, Y. & Gakis, N. & Hontou, V. & Lalas, D.P. & Steiner, D. & Tuerk, A. & Fruhmann, C. & Pucker, J., 2015. "Lessons learnt from a sectoral analysis of greenhouse gas mitigation potential in the Balkans," Energy, Elsevier, vol. 92(P3), pages 577-591.
    18. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    19. Pereverza, Kateryna & Pasichnyi, Oleksii & Kordas, Olga, 2019. "Modular participatory backcasting: A unifying framework for strategic planning in the heating sector," Energy Policy, Elsevier, vol. 124(C), pages 123-134.
    20. Busch, Jonathan & Roelich, Katy & Bale, Catherine S.E. & Knoeri, Christof, 2017. "Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks," Energy Policy, Elsevier, vol. 100(C), pages 170-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:423-:d:480271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.