IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v65y2014icp475-489.html
   My bibliography  Save this article

Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system

Author

Listed:
  • Connolly, D.
  • Lund, H.
  • Mathiesen, B.V.
  • Werner, S.
  • Möller, B.
  • Persson, U.
  • Boermans, T.
  • Trier, D.
  • Østergaard, P.A.
  • Nielsen, S.

Abstract

Six different strategies have recently been proposed for the European Union (EU) energy system in the European Commission's report, Energy Roadmap 2050. The objective for these strategies is to identify how the EU can reach its target of an 80% reduction in annual greenhouse gas emissions in 2050 compared to 1990 levels. None of these scenarios involve the large-scale implementation of district heating, but instead they focus on the electrification of the heating sector (primarily using heat pumps) and/or the large-scale implementation of electricity and heat savings. In this paper, the potential for district heating in the EU between now and 2050 is identified, based on extensive and detailed mapping of the EU heat demand and various supply options. Subsequently, a new ‘district heating plus heat savings’ scenario is technically and economically assessed from an energy systems perspective. The results indicate that with district heating, the EU energy system will be able to achieve the same reductions in primary energy supply and carbon dioxide emissions as the existing alternatives proposed. However, with district heating these goals can be achieved at a lower cost, with heating and cooling costs reduced by approximately 15%.

Suggested Citation

  • Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
  • Handle: RePEc:eee:enepol:v:65:y:2014:i:c:p:475-489
    DOI: 10.1016/j.enpol.2013.10.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513010574
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly, Scott & Pollitt, Michael, 2010. "An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom," Energy Policy, Elsevier, vol. 38(11), pages 6936-6945, November.
    2. Persson, Urban & Werner, Sven, 2012. "District heating in sequential energy supply," Applied Energy, Elsevier, vol. 95(C), pages 123-131.
    3. Li, Hongwei & Svendsen, Svend, 2012. "Energy and exergy analysis of low temperature district heating network," Energy, Elsevier, vol. 45(1), pages 237-246.
    4. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    5. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    6. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    7. Poputoaia, Diana & Bouzarovski, Stefan, 2010. "Regulating district heating in Romania: Legislative challenges and energy efficiency barriers," Energy Policy, Elsevier, vol. 38(7), pages 3820-3829, July.
    8. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    9. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    10. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    11. Fahlén, E. & Ahlgren, E.O., 2009. "Assessment of integration of different biomass gasification alternatives in a district-heating system," Energy, Elsevier, vol. 34(12), pages 2184-2195.
    12. Lund, H & Münster, E, 2003. "Modelling of energy systems with a high percentage of CHP and wind power," Renewable Energy, Elsevier, vol. 28(14), pages 2179-2193.
    13. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    14. Egeskog, Andrea & Hansson, Julia & Berndes, Göran & Werner, Sven, 2009. "Co-generation of biofuels for transportation and heat for district heating systems--an assessment of the national possibilities in the EU," Energy Policy, Elsevier, vol. 37(12), pages 5260-5272, December.
    15. Lund, Henrik & Clark, Woodrow W., 2002. "Management of fluctuations in wind power and CHP comparing two possible Danish strategies," Energy, Elsevier, vol. 27(5), pages 471-483.
    16. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    17. Alberg Østergaard, Poul & Mathiesen, Brian Vad & Möller, Bernd & Lund, Henrik, 2010. "A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass," Energy, Elsevier, vol. 35(12), pages 4892-4901.
    18. Sperling, Karl & Möller, Bernd, 2012. "End-use energy savings and district heating expansion in a local renewable energy system – A short-term perspective," Applied Energy, Elsevier, vol. 92(C), pages 831-842.
    19. Lund, Henrik & Østergaard, Poul Alberg, 2000. "Electric grid and heat planning scenarios with centralised and distributed sources of conventional, CHP and wind generation," Energy, Elsevier, vol. 25(4), pages 299-312.
    20. Lončar, D. & Ridjan, I., 2012. "Medium term development prospects of cogeneration district heating systems in transition country – Croatian case," Energy, Elsevier, vol. 48(1), pages 32-39.
    21. Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
    22. Mathiesen, Brian Vad & Lund, Henrik & Connolly, David, 2012. "Limiting biomass consumption for heating in 100% renewable energy systems," Energy, Elsevier, vol. 48(1), pages 160-168.
    23. Linden, Mikael & Peltola-Ojala, Päivi, 2010. "The deregulation effects of Finnish electricity markets on district heating prices," Energy Economics, Elsevier, vol. 32(5), pages 1191-1198, September.
    24. Holmgren, Kristina, 2006. "Role of a district-heating network as a user of waste-heat supply from various sources - the case of Göteborg," Applied Energy, Elsevier, vol. 83(12), pages 1351-1367, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Europe; District heating; Mapping and modelling;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:65:y:2014:i:c:p:475-489. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.