IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01100882.html
   My bibliography  Save this paper

Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools

Author

Listed:
  • Jacques Després

    (CEA/LITEN/DTNM/LT - CEA - Commissariat à l'énergie atomique et aux énergies alternatives, G2ELab - Laboratoire de Génie Electrique de Grenoble - UJF - Université Joseph Fourier - Grenoble 1 - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - INPG - Institut National Polytechnique de Grenoble - CNRS - Centre National de la Recherche Scientifique, équipe EDDEN - PACTE - Pacte, Laboratoire de sciences sociales - UPMF - Université Pierre Mendès France - Grenoble 2 - UJF - Université Joseph Fourier - Grenoble 1 - IEPG - Sciences Po Grenoble - Institut d'études politiques de Grenoble - CNRS - Centre National de la Recherche Scientifique)

  • Nourédine Hadjsaïd

    (G2ELab - Laboratoire de Génie Electrique de Grenoble - UJF - Université Joseph Fourier - Grenoble 1 - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - INPG - Institut National Polytechnique de Grenoble - CNRS - Centre National de la Recherche Scientifique)

  • Patrick Criqui

    (équipe EDDEN - PACTE - Pacte, Laboratoire de sciences sociales - UPMF - Université Pierre Mendès France - Grenoble 2 - UJF - Université Joseph Fourier - Grenoble 1 - IEPG - Sciences Po Grenoble - Institut d'études politiques de Grenoble - CNRS - Centre National de la Recherche Scientifique)

  • Isabelle Noirot

    (CEA/LITEN/DTNM/LT - CEA - Commissariat à l'énergie atomique et aux énergies alternatives)

Abstract

The exploration of future energy system trajectories needs to be based on long-term scenarios, which in turn requires using long-term modelling tools. Introducing a strong decarbonisation constraint, for instance, profoundly modifies the power sector, which is impacted by increasing shares of variable renewable energy sources. Long-term modelling tools working on different assumptions increasingly factor in these impacts, the assessment of which requires a clear description and categorization of the technical and economic choices for representing the tools in question. A new typology based on a literature review is presented for both power sector models and long-term models of the energy system. New comparing criteria focussing on the power sector's components are put forward, such as electricity storage and grid. An analysis carried out by means of this categorization on five chosen models shows that, up until now, energy modelling tools and power system tools have been designed to meet separate objectives and have not combined their advantages.

Suggested Citation

  • Jacques Després & Nourédine Hadjsaïd & Patrick Criqui & Isabelle Noirot, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Post-Print hal-01100882, HAL.
  • Handle: RePEc:hal:journl:hal-01100882
    DOI: 10.1016/j.energy.2014.12.005
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jonathan Kohler, Terry Barker, Dennis Anderson and Haoran Pan, 2006. "Combining Energy Technology Dynamics and Macroeconometrics: The E3MG Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 113-134.
    2. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.
    3. Lapillonne, B. & Chateau, B., 1981. "The medee models for long term energy demand forecasting," Socio-Economic Planning Sciences, Elsevier, vol. 15(2), pages 53-58.
    4. Vaillancourt, Kathleen & Labriet, Maryse & Loulou, Richard & Waaub, Jean-Philippe, 2008. "The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model," Energy Policy, Elsevier, vol. 36(7), pages 2296-2307, July.
    5. Jae Edmonds & Marshall Wise & Hugh Pitcher & Richard Richels & Tom Wigley & Chris Maccracken, 1997. "An integrated assessment of climate change and the accelerated introduction of advanced energy technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 1(4), pages 311-339, December.
    6. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    7. van Beeck, N.M.J.P., 1999. "Classification of Energy Models," Other publications TiSEM 6f2cbb5e-2d53-4be6-a4f9-9, Tilburg University, School of Economics and Management.
    8. Deane, J.P. & Chiodi, Alessandro & Gargiulo, Maurizio & Ó Gallachóir, Brian P., 2012. "Soft-linking of a power systems model to an energy systems model," Energy, Elsevier, vol. 42(1), pages 303-312.
    9. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    10. Son H. Kim, Jae Edmonds, Josh Lurz, Steven J. Smith, and Marshall Wise, 2006. "The objECTS Framework for integrated Assessment: Hybrid Modeling of Transportation," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 63-92.
    11. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    12. Andreas Schafer and Henry D. Jacoby, 2006. "Experiments with a Hybrid CGE-MARKAL Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 171-177.
    13. Alain L. Bernard & Marc Vielle, 1998. "GEMINI-E3, un modèle d'équilibre général national - international économique, énergétique et environnemental," Économie et Prévision, Programme National Persée, vol. 136(5), pages 1-2.
    14. Maurizio Gargiulo & Brian Ó Gallachóir, 2013. "Long-term energy models: Principles, characteristics, focus, and limitations," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(2), pages 158-177, March.
    15. Valentina Bosetti, Carlo Carraro, Marzio Galeotti, Emanuele Massetti, Massimo Tavoni, 2006. "A World induced Technical Change Hybrid Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 13-38.
    16. Spiecker, Stephan & Weber, Christoph, 2014. "The future of the European electricity system and the impact of fluctuating renewable energy – A scenario analysis," Energy Policy, Elsevier, vol. 65(C), pages 185-197.
    17. Hiro Lee & Joaquim Oliveira Martins & Dominique van der Mensbrugghe, 1994. "The OECD Green Model: An Updated Overview," OECD Development Centre Working Papers 97, OECD Publishing.
    18. Frédéric Reynes & Yasser Yeddir-Tamsamani & Gaël Callonec, 2011. "Presentation of the Three-ME model: Multi-sector Macroeconomic Model for the Evaluation of Environmental and Energy policy," Documents de Travail de l'OFCE 2011-10, Observatoire Francais des Conjonctures Economiques (OFCE).
    19. Riekkola, Anna Krook & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2013. "Challenges in Soft-Linking: The Case of EMEC and TIMES-Sweden," Working Papers 133, National Institute of Economic Research.
    20. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    21. Andrea Herbst & Felipe Andrés Toro & Felix Reitze & Eberhard Jochem, 2012. "Introduction to Energy Systems Modelling," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 111-135, June.
    22. repec:fpb:wpaper:95 is not listed on IDEAS
    23. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    24. Frederic Ghersi and Jean-Charles Hourcade, 2006. "Macroeconomic Consistency issues in E3 Modeling: The Continued Fable of the Elephant and the Rabbit," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 39-62.
    25. van Beeck, N.M.J.P., 1999. "Classification of Energy Models," Research Memorandum 777, Tilburg University, School of Economics and Management.
    26. Simoglou, Christos K. & Biskas, Pandelis N. & Vagropoulos, Stylianos I. & Bakirtzis, Anastasios G., 2014. "Electricity market models and RES integration: The Greek case," Energy Policy, Elsevier, vol. 67(C), pages 531-542.
    27. Brancucci Martínez-Anido, C. & Vandenbergh, M. & de Vries, L. & Alecu, C. & Purvins, A. & Fulli, G. & Huld, T., 2013. "Medium-term demand for European cross-border electricity transmission capacity," Energy Policy, Elsevier, vol. 61(C), pages 207-222.
    28. Cormio, C. & Dicorato, M. & Minoia, A. & Trovato, M., 2003. "A regional energy planning methodology including renewable energy sources and environmental constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 99-130, April.
    29. Finon, Dominique, 1974. "Optimisation model for the French energy sector," Energy Policy, Elsevier, vol. 2(2), pages 136-151, June.
    30. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.
    31. Leuthold, Florian & Weigt, Hannes & von Hirschhausen, Christian, 2008. "ELMOD - A Model of the European Electricity Market," MPRA Paper 65660, University Library of Munich, Germany.
    32. Mark K. Jaccard & John Nyboer & Crhis Bataille & Bryn Sadownik, 2003. "Modeling the Cost of Climate Policy: Distinguishing Between Alternative Cost Definitions and Long-Run Cost Dynamics," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 49-73.
    33. Baringo, L. & Conejo, A.J., 2013. "Correlated wind-power production and electric load scenarios for investment decisions," Applied Energy, Elsevier, vol. 101(C), pages 475-482.
    34. F. Ghersi & Jean Charles Hourcade, 2006. "Macroeconomic consistency issues in E3 modeling: The continued fable of the elephant and the rabbit," Post-Print hal-00716324, HAL.
    35. Messner, Sabine & Schrattenholzer, Leo, 2000. "MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively," Energy, Elsevier, vol. 25(3), pages 267-282.
    36. Kainuma, Mikiko & Matsuoka, Yuzuru & Morita, Tsuneyuki, 2000. "The AIM/end-use model and its application to forecast Japanese carbon dioxide emissions," European Journal of Operational Research, Elsevier, vol. 122(2), pages 416-425, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Variable renewable energies and storage development in long term energy modelling tools," Post-Print hal-01279467, HAL.
    2. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    3. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    4. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
    5. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    6. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    7. Densing, M. & Panos, E. & Hirschberg, S., 2016. "Meta-analysis of energy scenario studies: Example of electricity scenarios for Switzerland," Energy, Elsevier, vol. 109(C), pages 998-1015.
    8. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Analysing the interactions between Variable Renewable Energies, electricity storage and grid in long term energy modelling tools," Post-Print hal-01279461, HAL.
    9. Welsch, M. & Howells, M. & Bazilian, M. & DeCarolis, J.F. & Hermann, S. & Rogner, H.H., 2012. "Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code," Energy, Elsevier, vol. 46(1), pages 337-350.
    10. Xavier Labandeira, Pedro Linares and Miguel Rodriguez, 2009. "An Integrated Approach to Simulate the impacts of Carbon Emissions Trading Schemes," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    11. Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
    12. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    14. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    15. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
    16. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    17. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    18. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    19. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    20. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Bridging the scales: A conceptual model for coordinated expansion of renewable power generation, transmission and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2687-2695.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01100882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.