IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i2p285-317.html
   My bibliography  Save this article

RIEP: Regional integrated energy plan

Author

Listed:
  • Ramachandra, T.V.

Abstract

The energy planning endeavours for a particular region involves the finding of a set of sources and conversion devices so as to meet the energy requirement/demand of all the tasks in an optimal manner. This optimality depends on the objective to minimise the total annual cost of energy and the dependence on non-local resources or maximise the overall system efficiency. Factors such as availability of resources in the region and task energy requirements impose constraints on the regional energy planning exercise. Thus, regional energy planning turns out to be a constrained optimisation problem. This paper describes an optimum energy allocation using integrated energy planning approaches for Uttara Kannada district and makes a satisfying energy allocation plan for the years 2005, 2010 and 2015. Integrated energy planning gives an optimal mix of new/conventional energy sources and is developed based on decision support systems (DSS) approach. The central theme of the energy planning at decentralised level would be to prepare regional energy plans to meet energy needs and development of alternate energy sources at least- cost to the economy and environment. Regional integrated energy planning (RIEP) mechanism takes into account various available resources and demands in a region. This implies that the assessment of the demand supply and its intervention in the energy system, which may appear desirable due to such exercises, must be at a similar geographic scale. Regional energy planning exercises need to be flexible (to cope with rapidly changing energy systems) and easy to use. The application of DSS is a new approach to this problem. Towards the goal of implementing analytical methods for integrated planning, computerised decision-system provides useful assistance in the analyses of available information, the projection of future conditions, and the evaluation of alternative scenarios. Some of the features of DSS found particularly useful in regional energy planning are: (i) flexible structure--allows appropriate feasible levels of disaggregation, (ii) integrated nature--promotes a better overall understanding of many processes and concepts involved in planning, allowing planners to concentrate on specific energy subsectors, and (iii) iterative nature and easy scenario testing features--provide guidance in optimising data collection activities. Regional integrated energy plan (RIEP) is a computer-assisted accounting and simulation tool being developed to assist policy makers and planners at district and state level in evaluating energy policies and develop ecologically sound, sustainable energy plans. Energy availability and demand situation are projected for various scenarios (base case scenario, high-energy intensity, and transformation, state-growth scenarios) in order to get a glimpse of future patterns and assess the likely impacts of energy policies. The application of DSS for Uttara Kananda district energy planning focuses on renewable resources that could be harnessed for energy, land use database, sectorwise energy demand database and optimal allocation of energy resources for various tasks, and then explore the energy use consequences of alternative scenarios, such as, base case scenarios, high-energy intensity and improved end use efficiency options. Linear programming formulation for optimum allocation based on the cost minimisation objective shows that there is substantial savings of about 19.19% in energy and 36.24% cost reduction in overall energy system. Cost per unit (kWh) of energy with optimal allocation of energy is Rs. 0.31/kWh (as against Rs. 0.39/kWh without optimisation). Optimisation carried out with the objective of maximisation of efficiency of 'ijk' combination for all combinations shows energy saving of 19.98% and cost of energy as Rs. 0.34/kWh. The scenario analyses reveal that relatively vigorous growth in energy demand in Uttara Kannada district can be accomplished without exceeding available resources.

Suggested Citation

  • Ramachandra, T.V., 2009. "RIEP: Regional integrated energy plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 285-317, February.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:2:p:285-317
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(07)00141-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramachandra, T.V. & Shruthi, B.V., 2007. "Spatial mapping of renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1460-1480, September.
    2. van Beeck, N.M.J.P., 1999. "Classification of Energy Models," Other publications TiSEM 6f2cbb5e-2d53-4be6-a4f9-9, Tilburg University, School of Economics and Management.
    3. Ramachandra, T. V. & Kamakshi, G. & Shruthi, B. V., 2004. "Bioresource status in Karnataka," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(1), pages 1-47, February.
    4. Hiremath, R.B. & Shikha, S. & Ravindranath, N.H., 2007. "Decentralized energy planning; modeling and application--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 729-752, June.
    5. Ramachandra, T. V. & Joshi, N. V. & Subramanian, D. K., 2000. "Present and prospective role of bioenergy in regional energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(4), pages 375-430, December.
    6. Rath-Nagel, St. & Voss, A., 1981. "Energy models for planning and policy assessment," European Journal of Operational Research, Elsevier, vol. 8(2), pages 99-114, October.
    7. Voivontas, D. & Assimacopoulos, D. & Mourelatos, A. & Corominas, J., 1998. "Evaluation of Renewable Energy potential using a GIS decision support system," Renewable Energy, Elsevier, vol. 13(3), pages 333-344.
    8. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Modelling energy systems for developing countries," Energy Policy, Elsevier, vol. 35(6), pages 3473-3482, June.
    9. Meier, Peter & Mubayi, Vinod, 1983. "Modelling energy-economic interactions in developing countries: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 13(1), pages 41-59, May.
    10. Parker, Brian J & Al-Utaibi, Ghassan A, 1986. "Decision support systems: The reality that seems hard to accept?," Omega, Elsevier, vol. 14(2), pages 135-143.
    11. van Beeck, N.M.J.P., 1999. "Classification of Energy Models," Research Memorandum 777, Tilburg University, School of Economics and Management.
    12. Ramachandra, T.V. & Subramanian, D.K. & Joshi, N.V., 1997. "Wind energy potential assessment in Uttara Kannada district of Karnataka, India," Renewable Energy, Elsevier, vol. 10(4), pages 585-611.
    13. Pandey, Rahul, 2002. "Energy policy modelling: agenda for developing countries," Energy Policy, Elsevier, vol. 30(2), pages 97-106, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    2. Gemelli, Alberto & Mancini, Adriano & Longhi, Sauro, 2011. "GIS-based energy-economic model of low temperature geothermal resources: A case study in the Italian Marche region," Renewable Energy, Elsevier, vol. 36(9), pages 2474-2483.
    3. Xu, Baoping & Zhou, Shaoxiang & Hao, Lin, 2015. "Approach and practices of district energy planning to achieve low carbon outcomes in China," Energy Policy, Elsevier, vol. 83(C), pages 109-122.
    4. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Zhou, Xiong & Huang, Guohe & Zhu, Hua & Chen, Jiapei & Xu, Jinliang, 2015. "Chance-constrained two-stage fractional optimization for planning regional energy systems in British Columbia, Canada," Applied Energy, Elsevier, vol. 154(C), pages 663-677.
    6. Belmonte, Silvina & Escalante, Karina Natalia & Franco, Judith, 2015. "Shaping changes through participatory processes: Local development and renewable energy in rural habitats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 278-289.
    7. Arnette, Andrew & Zobel, Christopher W., 2012. "An optimization model for regional renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4606-4615.
    8. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    9. Ramachandra, T.V. & Shwetmala,, 2012. "Decentralised carbon footprint analysis for opting climate change mitigation strategies in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5820-5833.
    10. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    11. Dzene, Ilze & Rošā, Marika & Blumberga, Dagnija, 2011. "How to select appropriate measures for reductions in negative environmental impact? Testing a screening method on a regional energy system," Energy, Elsevier, vol. 36(4), pages 1878-1883.
    12. Sahoo, Somadutta & van Stralen, Joost N.P. & Zuidema, Christian & Sijm, Jos & Yamu, Claudia & Faaij, André, 2022. "Regionalization of a national integrated energy system model: A case study of the northern Netherlands," Applied Energy, Elsevier, vol. 306(PB).
    13. Yeo, In-Ae & Yoon, Seong-Hwan & Yee, Jurng-Jae, 2013. "Development of an Environment and energy Geographical Information System (E-GIS) construction model to support environmentally friendly urban planning," Applied Energy, Elsevier, vol. 104(C), pages 723-739.
    14. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    15. Ramachandra, T.V. & Bajpai, Vishnu & Kulkarni, Gouri & Aithal, Bharath H. & Han, Sun Sheng, 2017. "Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1331-1344.
    16. Liu, Zhen & Shi, Yuren & Yan, Jianming & Ou, Xunmin & Lieu, Jenny, 2012. "Research on the decomposition model for China’s National Renewable Energy total target," Energy Policy, Elsevier, vol. 51(C), pages 110-120.
    17. K.J. Sreekanth & S. Jayarah & N. Sudarsan, 2011. "A Meta Model for Domestic Energy Consumption," International Journal of Energy Economics and Policy, Econjournals, vol. 1(3), pages 69-77, November.
    18. Kalim U. Shah & Sashwat Roy & Wei-Ming Chen & Keron Niles & Dinesh Surroop, 2020. "Application of an Institutional Assessment and Design (IAD)-Enhanced Integrated Regional Energy Policy and Planning (IREPP) Framework to Island States," Sustainability, MDPI, vol. 12(7), pages 1-20, April.
    19. Guler, Burak & Çelebi, Emre & Nathwani, Jatin, 2018. "A ‘Regional Energy Hub’ for achieving a low-carbon energy transition," Energy Policy, Elsevier, vol. 113(C), pages 376-385.
    20. Luis Ramirez Camargo & Judith Franco & Nilsa María Sarmiento Babieri & Silvina Belmonte & Karina Escalante & Raphaela Pagany & Wolfgang Dorner, 2016. "Technical, Economical and Social Assessment of Photovoltaics in the Frame of the Net-Metering Law for the Province of Salta, Argentina," Energies, MDPI, vol. 9(3), pages 1-21, February.
    21. Patlitzianas, Konstantinos D. & Christos, Kolybiris, 2011. "Sustainable energy investments in Hellenic urban areas: Examining modern financial mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5186-5193.
    22. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    23. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhen & Shi, Yuren & Yan, Jianming & Ou, Xunmin & Lieu, Jenny, 2012. "Research on the decomposition model for China’s National Renewable Energy total target," Energy Policy, Elsevier, vol. 51(C), pages 110-120.
    2. Nadia S. Ouedraogo, 2017. "Energy futures modelling for African countries: LEAP model application," WIDER Working Paper Series 056, World Institute for Development Economic Research (UNU-WIDER).
    3. Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
    4. Vanegas Cantarero, María Mercedes, 2018. "Reviewing the Nicaraguan transition to a renewable energy system: Why is “business-as-usual” no longer an option?," Energy Policy, Elsevier, vol. 120(C), pages 580-592.
    5. Nadia S. Ouedraogo, 2017. "Energy futures modelling for African countries: LEAP model application," WIDER Working Paper Series wp-2017-56, World Institute for Development Economic Research (UNU-WIDER).
    6. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    7. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    8. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
    10. Ramachandra, T.V., 2010. "Mapping of fuelwood trees using geoinformatics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 642-654, February.
    11. Ramachandra, T.V. & Hebbale, Deepthi, 2020. "Bioethanol from macroalgae: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Charani Shandiz, Saeid & Rismanchi, Behzad & Foliente, Greg, 2021. "Energy master planning for net-zero emission communities: State of the art and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Vaccaro, Roberto & Rocco, Matteo V., 2021. "Quantifying the impact of low carbon transition scenarios at regional level through soft-linked energy and economy models: The case of South-Tyrol Province in Italy," Energy, Elsevier, vol. 220(C).
    14. Densing, M. & Panos, E. & Hirschberg, S., 2016. "Meta-analysis of energy scenario studies: Example of electricity scenarios for Switzerland," Energy, Elsevier, vol. 109(C), pages 998-1015.
    15. Khan, Muhammad Arshad, 2015. "Modelling and forecasting the demand for natural gas in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1145-1159.
    16. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    17. Aliaga Lordemann, Javier & Herrerra Jiménez, Alejandro, 2014. "Energy-Mix Scenarios for Bolivia," Documentos de trabajo 8/2014, Instituto de Investigaciones Socio-Económicas (IISEC), Universidad Católica Boliviana.
    18. Thomas Pregger & Tobias Naegler & Wolfgang Weimer-Jehle & Sigrid Prehofer & Wolfgang Hauser, 2020. "Moving towards socio-technical scenarios of the German energy transition—lessons learned from integrated energy scenario building," Climatic Change, Springer, vol. 162(4), pages 1743-1762, October.
    19. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Analysing the interactions between Variable Renewable Energies, electricity storage and grid in long term energy modelling tools," Post-Print hal-01279461, HAL.
    20. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:2:p:285-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.