IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v83y2015icp109-122.html
   My bibliography  Save this article

Approach and practices of district energy planning to achieve low carbon outcomes in China

Author

Listed:
  • Xu, Baoping
  • Zhou, Shaoxiang
  • Hao, Lin

Abstract

District energy planning is an important methodology to assist in realizing a lower carbon target. However, district energy planning has not yet been incorporated into the statutory planning system in China, primarily because there are no clear standards and specifications for these plans. In this paper, we propose a general framework and low carbon estimation method for district energy planning, which is based on evaluating the low carbon energy planning practices of several new districts in China. In addition, several key points of concern in the planning process are extracted and discussed: overall infrastructure planning; co-operation between city planning and other special low carbon eco-planning; investment, financing and profitable operation; planning management mechanisms; and the management of the construction of the energy system to coincide with the project schedule. We carried out a case study of a low carbon energy plan for a new district of Beijing to evaluate our framework. Finally, we conclude that to realize the low carbon target, regional energy planning covering technologies, the market and management should be standardized as soon as possible.

Suggested Citation

  • Xu, Baoping & Zhou, Shaoxiang & Hao, Lin, 2015. "Approach and practices of district energy planning to achieve low carbon outcomes in China," Energy Policy, Elsevier, vol. 83(C), pages 109-122.
  • Handle: RePEc:eee:enepol:v:83:y:2015:i:c:p:109-122
    DOI: 10.1016/j.enpol.2015.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515001500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pasimeni, Maria Rita & Petrosillo, Irene & Aretano, Roberta & Semeraro, Teodoro & De Marco, Antonella & Zaccarelli, Nicola & Zurlini, Giovanni, 2014. "Scales, strategies and actions for effective energy planning: A review," Energy Policy, Elsevier, vol. 65(C), pages 165-174.
    2. Jones, Donald W., 1991. "How urbanization affects energy-use in developing countries," Energy Policy, Elsevier, vol. 19(7), pages 621-630, September.
    3. Brookshire, Daniel & Kaza, Nikhil, 2013. "Planning for seven generations: Energy planning of American Indian tribes," Energy Policy, Elsevier, vol. 62(C), pages 1506-1514.
    4. Sperling, Karl & Hvelplund, Frede & Mathiesen, Brian Vad, 2011. "Centralisation and decentralisation in strategic municipal energy planning in Denmark," Energy Policy, Elsevier, vol. 39(3), pages 1338-1351, March.
    5. Ramachandra, T.V., 2009. "RIEP: Regional integrated energy plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 285-317, February.
    6. Mourmouris, J.C. & Potolias, C., 2013. "A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece," Energy Policy, Elsevier, vol. 52(C), pages 522-530.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erli Dan & Jianfei Shen, 2022. "Establishment of Corporate Energy Management Systems and Voluntary Carbon Information Disclosure in Chinese Listed Companies: The Moderating Role of Corporate Leaders’ Low-Carbon Awareness," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    2. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    3. Mayer, Zoe & Volk, Rebekka & Schultmann, Frank, 2021. "Evaluation of building analysis approaches as a basis for the energy improvement of city districts," Working Paper Series in Production and Energy 61, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    4. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    5. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    6. Jianxue Chai & Lihui Zhang & Meng Yang & Qingyun Nie & Lei Nie, 2020. "Investigation on the Coupling Coordination Relationship between Electric Power Green Development and Ecological Civilization Construction in China: A Case Study of Beijing," Sustainability, MDPI, vol. 12(21), pages 1-29, October.
    7. Yang, Shubo & Jahanger, Atif & Hossain, Mohammad Razib, 2023. "Does China's low-carbon city pilot intervention limit electricity consumption? An analysis of industrial energy efficiency using time-varying DID model," Energy Economics, Elsevier, vol. 121(C).
    8. Shihong Guo & Qijiao Song & Ye Qi, 2021. "Innovation or implementation? Local response to low‐carbon policy experimentation in China," Review of Policy Research, Policy Studies Organization, vol. 38(5), pages 555-569, September.
    9. Zhao, Zhen-yu & Zhu, Jiang & Xia, Bo, 2016. "Multi-fractal fluctuation features of thermal power coal price in China," Energy, Elsevier, vol. 117(P1), pages 10-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castán Broto, Vanesa, 2017. "Urban Governance and the Politics of Climate change," World Development, Elsevier, vol. 93(C), pages 1-15.
    2. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Zhao, Mei, 2015. "Methods and tools for community energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1335-1348.
    3. Pablo-Romero, María del P. & Pozo-Barajas, Rafael & Sánchez-Braza, Antonio, 2016. "Analyzing the effects of Energy Action Plans on electricity consumption in Covenant of Mayors signatory municipalities in Andalusia," Energy Policy, Elsevier, vol. 99(C), pages 12-26.
    4. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    5. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Hettinga, Sanne & Nijkamp, Peter & Scholten, Henk, 2018. "A multi-stakeholder decision support system for local neighbourhood energy planning," Energy Policy, Elsevier, vol. 116(C), pages 277-288.
    7. Damsø, Tue & Kjær, Tyge & Christensen, Thomas Budde, 2016. "Local climate action plans in climate change mitigation – examining the case of Denmark," Energy Policy, Elsevier, vol. 89(C), pages 74-83.
    8. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    9. Bakirtas, Tahsin & Akpolat, Ahmet Gokce, 2018. "The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries," Energy, Elsevier, vol. 147(C), pages 110-121.
    10. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    11. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    12. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    13. Modarres, Ali, 2013. "Commuting and energy consumption: toward an equitable transportation policy," Journal of Transport Geography, Elsevier, vol. 33(C), pages 240-249.
    14. Cheng, Zhi & Lien, Fue-Sang & Yee, Eugene & Meng, Hang, 2022. "A unified framework for aeroacoustics simulation of wind turbines," Renewable Energy, Elsevier, vol. 188(C), pages 299-319.
    15. Janusz Myszczyszyn & Błażej Suproń, 2022. "Relationship among Economic Growth, Energy Consumption, CO 2 Emission, and Urbanization: An Econometric Perspective Analysis," Energies, MDPI, vol. 15(24), pages 1-18, December.
    16. Thomas L Muinzer & Geraint Ellis, 2017. "Subnational governance for the low carbon energy transition: Mapping the UK’s ‘Energy Constitution’," Environment and Planning C, , vol. 35(7), pages 1176-1197, November.
    17. Andersson, Fredrik N.G., 2023. "Income inequality and carbon emissions in the United States 1929–2019," Ecological Economics, Elsevier, vol. 204(PA).
    18. Huang, Zishuo & Yu, Hang & Chu, Xiangyang & Peng, Zhenwei, 2017. "A goal programming based model system for community energy plan," Energy, Elsevier, vol. 134(C), pages 893-901.
    19. Yu, Yantuan & Zhang, Ning & Kim, Jong Dae, 2020. "Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China," Energy Policy, Elsevier, vol. 139(C).
    20. Liu, Zhen & Shi, Yuren & Yan, Jianming & Ou, Xunmin & Lieu, Jenny, 2012. "Research on the decomposition model for China’s National Renewable Energy total target," Energy Policy, Elsevier, vol. 51(C), pages 110-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:83:y:2015:i:c:p:109-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.