IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7009-d833815.html
   My bibliography  Save this article

Sustainable Development of Economic Growth, Energy-Intensive Industries and Energy Consumption: Empirical Evidence from China’s Provinces

Author

Listed:
  • Yanli Ji

    (School of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, China)

  • Jie Xue

    (School of Economics, Hangzhou Dianzi University, Hangzhou 310018, China)

  • Zitian Fu

    (School of Economics, Sichuan Agricultural University, Chengdu 625014, China)

Abstract

At present, there is much literature on economic growth and energy consumption, but there is little literature combined with the industry perspective. This paper aims to clarify whether the development of energy-intensive industries is an indirect way for economic growth to affect energy consumption, which can provide a reference for the coordination of economic growth goals, industry development and reducing energy consumption. Based on China’s provincial panel data from 2000 to 2019, this paper measures the scale of provincial energy-intensive industries by entropy method and uses the panel regression model to test its transmission effect on energy consumption. The results show that 23.96% of the effects of economic growth on energy consumption are indirectly generated through the transmission of energy-intensive industries. Moreover, the transmission effects are only established in the eastern and western regions but are not significant in the central region. Therefore, controlling the rapid development of energy-intensive industries is an effective way to curb the expansion of China’s energy consumption scale. Green technology innovation, new-type urbanization construction and other supportive measures should be taken in accordance with local conditions. This research contributes to the coordinated and sustainable development of the economy, industry, and energy.

Suggested Citation

  • Yanli Ji & Jie Xue & Zitian Fu, 2022. "Sustainable Development of Economic Growth, Energy-Intensive Industries and Energy Consumption: Empirical Evidence from China’s Provinces," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7009-:d:833815
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsangyao Chang & Hsiao-Ping Chu & Wen-Yi Chen, 2013. "Energy consumption and economic growth in 12 Asian countries: panel data analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 20(3), pages 282-287, February.
    2. Yuan, Jia-Hai & Kang, Jian-Gang & Zhao, Chang-Hong & Hu, Zhao-Guang, 2008. "Energy consumption and economic growth: Evidence from China at both aggregated and disaggregated levels," Energy Economics, Elsevier, vol. 30(6), pages 3077-3094, November.
    3. Kaiyang Zhong & Chenglin Li & Qing Wang, 2021. "Evaluation of Bank Innovation Efficiency with Data Envelopment Analysis: From the Perspective of Uncovering the Black Box between Input and Output," Mathematics, MDPI, vol. 9(24), pages 1-18, December.
    4. Meng, Guanfei & Liu, Hongxun & Li, Jianglong & Sun, Chuanwang, 2022. "Determination of driving forces for China's energy consumption and regional disparities using a hybrid structural decomposition analysis," Energy, Elsevier, vol. 239(PC).
    5. Shiu, Alice & Lam, Pun-Lee, 2004. "Electricity consumption and economic growth in China," Energy Policy, Elsevier, vol. 32(1), pages 47-54, January.
    6. Ben Jebli, Mehdi & Ben Youssef, Slim, 2015. "The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 173-185.
    7. Ma, Ben, 2015. "Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes," Energy Economics, Elsevier, vol. 49(C), pages 390-401.
    8. Zheng, Yingmei & Qi, Jianhong & Chen, Xiaoliang, 2011. "The effect of increasing exports on industrial energy intensity in China," Energy Policy, Elsevier, vol. 39(5), pages 2688-2698, May.
    9. Ju, Keyi & Su, Bin & Zhou, Dequn & Wu, Junmin, 2017. "Does energy-price regulation benefit China's economy and environment? Evidence from energy-price distortions," Energy Policy, Elsevier, vol. 105(C), pages 108-119.
    10. Ozturk, Ilhan & Aslan, Alper & Kalyoncu, Huseyin, 2010. "Energy consumption and economic growth relationship: Evidence from panel data for low and middle income countries," Energy Policy, Elsevier, vol. 38(8), pages 4422-4428, August.
    11. Lin, Boqiang & Zhu, Junpeng, 2021. "Impact of China's new-type urbanization on energy intensity: A city-level analysis," Energy Economics, Elsevier, vol. 99(C).
    12. Benjamin S. Cheng, 1999. "Causality Between Energy Consumption and Economic Growth in India: An Application of Cointegration and Error-Correction Modeling," Indian Economic Review, Department of Economics, Delhi School of Economics, vol. 34(1), pages 39-49, January.
    13. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    14. Masih, Abul M. M. & Masih, Rumi, 1996. "Energy consumption, real income and temporal causality: results from a multi-country study based on cointegration and error-correction modelling techniques," Energy Economics, Elsevier, vol. 18(3), pages 165-183, July.
    15. Greening, Lorna A. & Boyd, Gale & Roop, Joseph M., 2007. "Modeling of industrial energy consumption: An introduction and context," Energy Economics, Elsevier, vol. 29(4), pages 599-608, July.
    16. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    17. Amusa, Hammed & Amusa, Kafayat & Mabugu, Ramos, 2009. "Aggregate demand for electricity in South Africa: An analysis using the bounds testing approach to cointegration," Energy Policy, Elsevier, vol. 37(10), pages 4167-4175, October.
    18. Fang, Zheng & Chang, Youngho, 2016. "Energy, human capital and economic growth in Asia Pacific countries — Evidence from a panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 56(C), pages 177-184.
    19. Alam, Md. Mahmudul & Murad, Md. Wahid, 2020. "The impacts of economic growth, trade openness and technological progress on renewable energy use in organization for economic co-operation and development countries," Renewable Energy, Elsevier, vol. 145(C), pages 382-390.
    20. Kaufmann, Robert K., 1994. "The effect of expected energy prices on energy demand: implications for energy conservation and carbon taxes," Resource and Energy Economics, Elsevier, vol. 16(2), pages 167-188, May.
    21. Huang, Junbing & Du, Dan & Tao, Qizhi, 2017. "An analysis of technological factors and energy intensity in China," Energy Policy, Elsevier, vol. 109(C), pages 1-9.
    22. Destek, Mehmet Akif & Aslan, Alper, 2017. "Renewable and non-renewable energy consumption and economic growth in emerging economies: Evidence from bootstrap panel causality," Renewable Energy, Elsevier, vol. 111(C), pages 757-763.
    23. Wang, Juan & Zhang, Sulan & Zhang, Qingjun, 2021. "The relationship of renewable energy consumption to financial development and economic growth in China," Renewable Energy, Elsevier, vol. 170(C), pages 897-904.
    24. Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
    25. Coers, Robin & Sanders, Mark, 2013. "The energy–GDP nexus; addressing an old question with new methods," Energy Economics, Elsevier, vol. 36(C), pages 708-715.
    26. Salim, Ruhul A. & Rafiq, Shuddhasattwa, 2012. "Why do some emerging economies proactively accelerate the adoption of renewable energy?," Energy Economics, Elsevier, vol. 34(4), pages 1051-1057.
    27. Dipa Adhikari & Yanying Chen, 2013. "Energy Consumption and Economic Growth: A Panel Cointegration Analysis for Developing Countries," Review of Economics & Finance, Better Advances Press, Canada, vol. 3, pages 68-80, May.
    28. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    29. Mutascu, Mihai, 2016. "A bootstrap panel Granger causality analysis of energy consumption and economic growth in the G7 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 166-171.
    30. Adom, Philip Kofi & Bekoe, William & Akoena, Sesi Kutri Komla, 2012. "Modelling aggregate domestic electricity demand in Ghana: An autoregressive distributed lag bounds cointegration approach," Energy Policy, Elsevier, vol. 42(C), pages 530-537.
    31. Liang Chen & Wanli Li & Kaibin Yuan & Xiaoqian Zhang, 2022. "Can informal environmental regulation promote industrial structure upgrading? Evidence from China," Applied Economics, Taylor & Francis Journals, vol. 54(19), pages 2161-2180, April.
    32. Sbia, Rashid & Shahbaz, Muhammad & Hamdi, Helmi, 2014. "A contribution of foreign direct investment, clean energy, trade openness, carbon emissions and economic growth to energy demand in UAE," Economic Modelling, Elsevier, vol. 36(C), pages 191-197.
    33. Aslan, Alper, 2016. "The causal relationship between biomass energy use and economic growth in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 362-366.
    34. Zhang, Chuanguo & Lin, Yan, 2012. "Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China," Energy Policy, Elsevier, vol. 49(C), pages 488-498.
    35. Shahbaz, Muhammad & Chaudhary, A.R. & Ozturk, Ilhan, 2017. "Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model," Energy, Elsevier, vol. 122(C), pages 83-93.
    36. Jones, Donald W., 1991. "How urbanization affects energy-use in developing countries," Energy Policy, Elsevier, vol. 19(7), pages 621-630, September.
    37. Huijie Yan, 2015. "Provincial energy intensity in China: The role of urbanization," Post-Print hal-01457329, HAL.
    38. Sharif Hossain, Md., 2011. "Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries," Energy Policy, Elsevier, vol. 39(11), pages 6991-6999.
    39. Liu, Yaobin, 2009. "Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model)," Energy, Elsevier, vol. 34(11), pages 1846-1854.
    40. Dong, Kangyin & Sun, Renjin & Hochman, Gal & Li, Hui, 2018. "Energy intensity and energy conservation potential in China: A regional comparison perspective," Energy, Elsevier, vol. 155(C), pages 782-795.
    41. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
    42. Kenneth B. Medlock III & Ronald Soligo, 2001. "Economic Development and End-Use Energy Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-105.
    43. Kahrl, Fredrich & Roland-Holst, David & Zilberman, David, 2013. "Past as Prologue? Understanding energy use in post-2002 China," Energy Economics, Elsevier, vol. 36(C), pages 759-771.
    44. Hing Lin Chan & Shu Kam Lee, 1996. "Forecasting the Demand for Energy in China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 19-30.
    45. Lee, Chien-Chiang, 2005. "Energy consumption and GDP in developing countries: A cointegrated panel analysis," Energy Economics, Elsevier, vol. 27(3), pages 415-427, May.
    46. Wang, S.S. & Zhou, D.Q. & Zhou, P. & Wang, Q.W., 2011. "CO2 emissions, energy consumption and economic growth in China: A panel data analysis," Energy Policy, Elsevier, vol. 39(9), pages 4870-4875, September.
    47. Tiwari, Aviral Kumar & Eapen, Leena Mary & Nair, Sthanu R, 2021. "Electricity consumption and economic growth at the state and sectoral level in India: Evidence using heterogeneous panel data methods," Energy Economics, Elsevier, vol. 94(C).
    48. Mukherjee, Kankana, 2008. "Energy use efficiency in U.S. manufacturing: A nonparametric analysis," Energy Economics, Elsevier, vol. 30(1), pages 76-96, January.
    49. Fan, Ying & Xia, Yan, 2012. "Exploring energy consumption and demand in China," Energy, Elsevier, vol. 40(1), pages 23-30.
    50. Ding-Yi Zhao & Yu-Yu Ma & Hung-Lung Lin, 2022. "Using the Entropy and TOPSIS Models to Evaluate Sustainable Development of Islands: A Case in China," Sustainability, MDPI, vol. 14(6), pages 1-25, March.
    51. Dogan, Eyup, 2016. "Analyzing the linkage between renewable and non-renewable energy consumption and economic growth by considering structural break in time-series data," Renewable Energy, Elsevier, vol. 99(C), pages 1126-1136.
    52. Costantini, Valeria & Martini, Chiara, 2010. "The causality between energy consumption and economic growth: A multi-sectoral analysis using non-stationary cointegrated panel data," Energy Economics, Elsevier, vol. 32(3), pages 591-603, May.
    53. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    54. Yu, Eden S. H. & Jin, Jang C., 1992. "Cointegration tests of energy consumption, income, and employment," Resources and Energy, Elsevier, vol. 14(3), pages 259-266, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Queling & Li, Ruida & Zhang, Ting, 2023. "Do natural resources ensure energy efficiency? A novel paradigm of resources-efficiency nexus for sustainable development," Resources Policy, Elsevier, vol. 87(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gyimah, Justice & Yao, Xilong & Tachega, Mark Awe & Sam Hayford, Isaac & Opoku-Mensah, Evans, 2022. "Renewable energy consumption and economic growth: New evidence from Ghana," Energy, Elsevier, vol. 248(C).
    2. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    3. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    4. Farzana Sharmin & Mohammed Robayet Khan & Mohammed Robayet Khan, 2016. "A Causal Relationship between Energy Consumption, Energy Prices and Economic Growth in Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 477-494.
    5. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    6. Shahbaz, Muhammad & Raghutla, Chandrashekar & Chittedi, Krishna Reddy & Jiao, Zhilun & Vo, Xuan Vinh, 2020. "The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index," Energy, Elsevier, vol. 207(C).
    7. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    8. Fang, Zheng & Chen, Yang, 2017. "Human capital and energy in economic growth – Evidence from Chinese provincial data," Energy Economics, Elsevier, vol. 68(C), pages 340-358.
    9. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    10. Gregori, Tullio & Tiwari, Aviral Kumar, 2020. "Do urbanization, income, and trade affect electricity consumption across Chinese provinces?," Energy Economics, Elsevier, vol. 89(C).
    11. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).
    12. Huang, Junbing & Lai, Yali & Hu, Hanlei, 2020. "The effect of technological factors and structural change on China's energy intensity: Evidence from dynamic panel models," China Economic Review, Elsevier, vol. 64(C).
    13. Jalil, Abdul, 2014. "Energy–growth conundrum in energy exporting and importing countries: Evidence from heterogeneous panel methods robust to cross-sectional dependence," Energy Economics, Elsevier, vol. 44(C), pages 314-324.
    14. Yu, Yantuan & Zhang, Ning & Kim, Jong Dae, 2020. "Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China," Energy Policy, Elsevier, vol. 139(C).
    15. Dong, Kangyin & Sun, Renjin & Hochman, Gal & Li, Hui, 2018. "Energy intensity and energy conservation potential in China: A regional comparison perspective," Energy, Elsevier, vol. 155(C), pages 782-795.
    16. Majed S. Almozaini, 2019. "The Causality Relationship between Economic Growth and Energy Consumption in The World s top Energy Consumers," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 40-53.
    17. Yulan Lv & Wei Chen & Jianquan Cheng, 2019. "Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis," Sustainability, MDPI, vol. 11(11), pages 1-20, June.
    18. Chen, Suisui & Zhang, Hongyan & Wang, Shuhong, 2022. "Trade openness, economic growth, and energy intensity in China," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    19. Mrabet, Zouhair & Alsamara, Mouyad & Saleh, Ali Salman & Anwar, Sajid, 2019. "Urbanization and non-renewable energy demand: A comparison of developed and emerging countries," Energy, Elsevier, vol. 170(C), pages 832-839.
    20. Lin, Boqiang & Zhu, Junpeng, 2021. "Impact of China's new-type urbanization on energy intensity: A city-level analysis," Energy Economics, Elsevier, vol. 99(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7009-:d:833815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.