IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i5p2688-2698.html
   My bibliography  Save this article

The effect of increasing exports on industrial energy intensity in China

Author

Listed:
  • Zheng, Yingmei
  • Qi, Jianhong
  • Chen, Xiaoliang

Abstract

Given China's heavy reliance on fuel energy and the dominance of its industrial sector in the economy, improving energy efficiency remains one of the practical means for the country to decrease energy intensity and to fulfill its commitment made at the Copenhagen Climate Change Conference to achieve a 40-45 percent reduction in CO2 emission intensity by 2020. This study investigates the impact of exports on industrial energy intensity to explore the possibility of reducing energy intensity through greater exports. A panel varying-coefficient regression model with a dataset of China's 20 industrial sub-sectors over 1999-2007 suggests that in general, greater exports aggravate energy intensity of the industrial sector and that great divergences exist in the impact of exports on energy intensity across sub-sectors. A panel threshold model further estimates the thresholds for the major determinants of energy intensity: exports, input in technological innovations, and Foreign Direct Investment (FDI) intensity. Given the great differences in specific sub-sector characteristics and the changing roles played by different factors across sub-sectors, there is no general export policy that would work for all sub-sectors in reducing sub-sector energy intensity. Instead, policies and measures aiming to encourage more efficient use of energy should take into full consideration the characteristics and situations of individual sub-sectors.

Suggested Citation

  • Zheng, Yingmei & Qi, Jianhong & Chen, Xiaoliang, 2011. "The effect of increasing exports on industrial energy intensity in China," Energy Policy, Elsevier, vol. 39(5), pages 2688-2698, May.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2688-2698
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(11)00128-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisher-Vanden, Karen & Jefferson, Gary H. & Liu, Hongmei & Tao, Quan, 2004. "What is driving China's decline in energy intensity?," Resource and Energy Economics, Elsevier, vol. 26(1), pages 77-97, March.
    2. Crompton, Paul & Wu, Yanrui, 2005. "Energy consumption in China: past trends and future directions," Energy Economics, Elsevier, vol. 27(1), pages 195-208, January.
    3. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    4. Fisher-Vanden, Karen & Jefferson, Gary H. & Jingkui, Ma & Jianyi, Xu, 2006. "Technology development and energy productivity in China," Energy Economics, Elsevier, vol. 28(5-6), pages 690-705, November.
    5. Richard F. Garbaccio & Mun S. Ho & Dale W. Jorgenson, 1999. "Why Has the Energy-Output Ratio Fallen in China?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 63-91.
    6. Sinton, Jonathan E. & Fridley, David G., 2000. "What goes up: recent trends in China's energy consumption," Energy Policy, Elsevier, vol. 28(10), pages 671-687, August.
    7. Hang, Leiming & Tu, Meizeng, 2007. "The impacts of energy prices on energy intensity: Evidence from China," Energy Policy, Elsevier, vol. 35(5), pages 2978-2988, May.
    8. Yao, Runming & Li, Baizhan & Steemers, Koen, 2005. "Energy policy and standard for built environment in China," Renewable Energy, Elsevier, vol. 30(13), pages 1973-1988.
    9. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng & Wu, Junlong, 2009. "Research on the energy-saving effect of energy policies in China: 1982-2006," Energy Policy, Elsevier, vol. 37(7), pages 2475-2480, July.
    10. Eskeland, Gunnar S. & Harrison, Ann E., 2003. "Moving to greener pastures? Multinationals and the pollution haven hypothesis," Journal of Development Economics, Elsevier, vol. 70(1), pages 1-23, February.
    11. Kahrl, Fredrich & Roland-Holst, David, 2008. "Energy and exports in China," China Economic Review, Elsevier, vol. 19(4), pages 649-658, December.
    12. Mielnik, Otavio & Goldemberg, Jose, 2002. "Foreign direct investment and decoupling between energy and gross domestic product in developing countries," Energy Policy, Elsevier, vol. 30(2), pages 87-89, January.
    13. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    14. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    15. Zhang, ZhongXiang, 2000. "Can China afford to commit itself an emissions cap? An economic and political analysis," Energy Economics, Elsevier, vol. 22(6), pages 587-614, December.
    16. Cole, Matthew A., 2006. "Does trade liberalization increase national energy use?," Economics Letters, Elsevier, vol. 92(1), pages 108-112, July.
    17. Huang, Jin-ping, 1993. "Industry energy use and structural change : A case study of The People's Republic of China," Energy Economics, Elsevier, vol. 15(2), pages 131-136, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adom, Philip Kofi, 2015. "Determinants of energy intensity in South Africa: Testing for structural effects in parameters," Energy, Elsevier, vol. 89(C), pages 334-346.
    2. Karen Fisher-Vanden, Yong Hu, Gary Jefferson, Michael Rock and Michael Toman, 2016. "Factors influencing energy intensity in four Chinese industries," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    3. repec:eee:rensus:v:81:y:2018:i:p2:p:1721-1729 is not listed on IDEAS
    4. Sbia, Rashid & Shahbaz, Muhammad & Hamdi, Helmi, 2014. "A contribution of foreign direct investment, clean energy, trade openness, carbon emissions and economic growth to energy demand in UAE," Economic Modelling, Elsevier, vol. 36(C), pages 191-197.
    5. Tafadzwa Ruzive & Thando Mkhombo & Simba Mhaka & Nomahlubi Mavikela & Andrew Phiri, 2017. "Elecricity intensity and unemployment in South Africa: A quantile regression analysis," Working Papers 1711, Department of Economics, Nelson Mandela University, revised Sep 2017.
    6. Bosupeng, Mpho, 2017. "Electricity Consumption and Exports Growth: Revisiting the Feedback Hypothesis," MPRA Paper 81756, University Library of Munich, Germany, revised 2017.
    7. Lei Jiang & Minhe Ji, 2016. "China’s Energy Intensity, Determinants and Spatial Effects," Sustainability, MDPI, Open Access Journal, vol. 8(6), pages 1-15, June.
    8. Adom, Philip Kofi & Amuakwa-Mensah, Franklin, 2016. "What drives the energy saving role of FDI and industrialization in East Africa?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 925-942.
    9. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    10. Yang, Guangfei & Li, Wenli & Wang, Jianliang & Zhang, Dongqing, 2016. "A comparative study on the influential factors of China's provincial energy intensity," Energy Policy, Elsevier, vol. 88(C), pages 74-85.
    11. Adom, Philip Kofi, 2015. "Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria," Energy, Elsevier, vol. 88(C), pages 334-350.
    12. Wu, Yanrui, 2012. "Energy intensity and its determinants in China's regional economies," Energy Policy, Elsevier, vol. 41(C), pages 703-711.
    13. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    14. Jiang, Xuemei & Zhu, Kunfu & Green, Christopher, 2015. "China's energy saving potential from the perspective of energy efficiency advantages of foreign-invested enterprises," Energy Economics, Elsevier, vol. 49(C), pages 104-112.
    15. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    16. repec:eee:enepol:v:109:y:2017:i:c:p:1-9 is not listed on IDEAS
    17. repec:eee:eneeco:v:68:y:2017:i:c:p:340-358 is not listed on IDEAS
    18. Khayyat, Nabaz T. & Heshmati, Almas, 2014. "Production Risk, Energy Use Efficiency and Productivity of Korean Industries," Working Paper Series in Economics and Institutions of Innovation 359, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    19. Adom, Philip Kofi, 2015. "Asymmetric impacts of the determinants of energy intensity in Nigeria," Energy Economics, Elsevier, vol. 49(C), pages 570-580.
    20. Ren, Shenggang & Yuan, Baolong & Ma, Xie & Chen, Xiaohong, 2014. "The impact of international trade on China׳s industrial carbon emissions since its entry into WTO," Energy Policy, Elsevier, vol. 69(C), pages 624-634.
    21. Jiang, Lei & Folmer, Henk & Ji, Minhe, 2014. "The drivers of energy intensity in China: A spatial panel data approach," China Economic Review, Elsevier, vol. 31(C), pages 351-360.
    22. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
    23. Nabeshima, Kaoru, 2011. "Growth strategies in a greener world," IDE Discussion Papers 314, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    24. repec:eee:rensus:v:81:y:2018:i:p2:p:2421-2430 is not listed on IDEAS
    25. Li, Fangyi & Song, Zhouying & Liu, Weidong, 2014. "China's energy consumption under the global economic crisis: Decomposition and sectoral analysis," Energy Policy, Elsevier, vol. 64(C), pages 193-202.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2688-2698. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.