IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v164y2025icp144-159.html
   My bibliography  Save this article

High-speed rail network and regional carbon emissions: Carbon lock-in or unlocking?

Author

Listed:
  • He, Haonan
  • Wang, Haomiao
  • Wang, Shanyong

Abstract

The rapid expansion of China’s high-speed rail (HSR) network has significantly contributed to regional economic growth and enhanced transportation efficiency. However, the impact of this development on carbon lock-in (CLI) and carbon unlocking remains under-explored, which is an area critical for understanding the potential of HSR in mitigating climate change. This study addresses this gap by analyzing data from 256 prefecture-level cities in China between 2009 and 2021. Urban CLI levels are quantified by a projection pursuit model based on genetic algorithms. Additionally, a High-Speed Rail Connectivity Index (HSRCI) is introduced to assess the current state of China’s HSR network. Our findings reveal that the HSR network effectively promotes carbon unlocking, especially in large and medium-sized cities, non-resource-based cities, and transportation hubs. It suggests that developing the HSR network can mitigate the increased carbon emissions associated with traditional transportation modes, thereby playing a crucial role in achieving China’s “dual carbon” goals. Furthermore, mechanism analysis indicates that increased urban economic density and population aggregation facilitate the expansion of the HSR network, effectively reducing CLI. Moreover, regional integration and innovation improvements significantly enhance the HSR network’s carbon-unlocking effect. Conversely, higher levels of fixed asset investment may, in some instances, exacerbate CLI. This study provides empirical evidence and policy recommendations to optimize the HSR network’s carbon-unlocking potential.

Suggested Citation

  • He, Haonan & Wang, Haomiao & Wang, Shanyong, 2025. "High-speed rail network and regional carbon emissions: Carbon lock-in or unlocking?," Transport Policy, Elsevier, vol. 164(C), pages 144-159.
  • Handle: RePEc:eee:trapol:v:164:y:2025:i:c:p:144-159
    DOI: 10.1016/j.tranpol.2025.01.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X25000435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2025.01.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brueckner, Jan K. & Largey, Ann G., 2008. "Social interaction and urban sprawl," Journal of Urban Economics, Elsevier, vol. 64(1), pages 18-34, July.
    2. Ng, Adolf K.Y. & Jiang, Changmin & Li, Xiaoyu & O'Connor, Kevin & Lee, Paul Tae-Woo, 2018. "A conceptual overview on government initiatives and the transformation of transport and regional systems," Journal of Transport Geography, Elsevier, vol. 71(C), pages 199-203.
    3. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    4. Wan, Jianxiang & Xie, Qiang & Fan, Xianxian, 2024. "The impact of transportation and information infrastructure on urban productivity: Evidence from 256 cities in China," Structural Change and Economic Dynamics, Elsevier, vol. 68(C), pages 384-392.
    5. Li, Xijing & Huang, Bo & Li, Rongrong & Zhang, Yipei, 2016. "Exploring the impact of high speed railways on the spatial redistribution of economic activities - Yangtze River Delta urban agglomeration as a case study," Journal of Transport Geography, Elsevier, vol. 57(C), pages 194-206.
    6. Jia, Ruining & Shao, Shuai & Yang, Lili, 2021. "High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach," Energy Economics, Elsevier, vol. 99(C).
    7. Chen, Yu & Wang, Yuandi & Zhao, Changyi, 2023. "How do high-speed rails influence city carbon emissions?," Energy, Elsevier, vol. 265(C).
    8. Carley, Sanya, 2011. "Historical analysis of U.S. electricity markets: Reassessing carbon lock-in," Energy Policy, Elsevier, vol. 39(2), pages 720-732, February.
    9. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    10. Wang, Chao & Lim, Ming K. & Zhang, Xinyi & Zhao, Longfeng & Lee, Paul Tae-Woo, 2020. "Railway and road infrastructure in the Belt and Road Initiative countries: Estimating the impact of transport infrastructure on economic growth," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 288-307.
    11. Feng, Gen-Fu & Yang, Hao-Chang & Gong, Qiang & Chang, Chun-Ping, 2021. "What is the exchange rate volatility response to COVID-19 and government interventions?," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 705-719.
    12. Wang, Chao & Chen, Junjing & Li, Boyan & Chen, Nengcheng & Wang, Wei, 2023. "Impact of high-speed railway construction on spatial patterns of regional economic development along the route: A case study of the Shanghai–Kunming high-speed railway," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    13. Chen, Zhenhua & Haynes, Kingsley E., 2017. "Impact of high-speed rail on regional economic disparity in China," Journal of Transport Geography, Elsevier, vol. 65(C), pages 80-91.
    14. Brownstone, David & Golob, Thomas F., 2009. "The impact of residential density on vehicle usage and energy consumption," Journal of Urban Economics, Elsevier, vol. 65(1), pages 91-98, January.
    15. Nie, Liang & Zhang, ZhongXiang, 2023. "Is high-speed rail heading towards a low-carbon industry? Evidence from a quasi-natural experiment in China," Resource and Energy Economics, Elsevier, vol. 72(C).
    16. Zhao, Min & Sun, Tao, 2022. "Dynamic spatial spillover effect of new energy vehicle industry policies on carbon emission of transportation sector in China," Energy Policy, Elsevier, vol. 165(C).
    17. Alicia H. Munnell, 1992. "Policy Watch: Infrastructure Investment and Economic Growth," Journal of Economic Perspectives, American Economic Association, vol. 6(4), pages 189-198, Fall.
    18. Dong, Kangyin & Jia, Rongwen & Zhao, Congyu & Wang, Kun, 2023. "Can smart transportation inhibit carbon lock-in? The case of China," Transport Policy, Elsevier, vol. 142(C), pages 59-69.
    19. Yan, Sen & Sun, Xinyu & Zhang, Yurong, 2024. "High-speed railway ripples on the greenness: Insight from urban green vegetation cover," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    20. Avogadro, Nicolò & Cattaneo, Mattia & Paleari, Stefano & Redondi, Renato, 2021. "Replacing short-medium haul intra-European flights with high-speed rail: Impact on CO2 emissions and regional accessibility," Transport Policy, Elsevier, vol. 114(C), pages 25-39.
    21. Mohsen Momenitabar & Raj Bridgelall & Zhila Dehdari Ebrahimi & Mohammad Arani, 2021. "Literature Review of Socioeconomic and Environmental Impacts of High-Speed Rail in the World," Sustainability, MDPI, vol. 13(21), pages 1-27, November.
    22. Marzieh Ronaghi & Michael Reed & Sayed Saghaian, 2020. "The impact of economic factors and governance on greenhouse gas emission," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 153-172, April.
    23. Yang, Xuehui & Zhang, Huirong & Li, Yan, 2022. "High-speed railway, factor flow and enterprise innovation efficiency: An empirical analysis on micro data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    24. Cascetta, Ennio & Cartenì, Armando & Henke, Ilaria & Pagliara, Francesca, 2020. "Economic growth, transport accessibility and regional equity impacts of high-speed railways in Italy: ten years ex post evaluation and future perspectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 412-428.
    25. Chen, Zhenhua & Xue, Junbo & Rose, Adam Z. & Haynes, Kingsley E., 2016. "The impact of high-speed rail investment on economic and environmental change in China: A dynamic CGE analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 232-245.
    26. Strauss, Jack & Li, Hongchang & Cui, Jinli, 2021. "High-speed Rail's impact on airline demand and air carbon emissions in China," Transport Policy, Elsevier, vol. 109(C), pages 85-97.
    27. Yatang Lin & Yu Qin & Jing Wu & Mandi Xu, 2022. "Author Correction: Impact of high-speed rail on road traffic and greenhouse gas emissions," Nature Climate Change, Nature, vol. 12(3), pages 297-297, March.
    28. Kaandorp, Chelsea & Miedema, Tes & Verhagen, Jeroen & van de Giesen, Nick & Abraham, Edo, 2022. "Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation," Applied Energy, Elsevier, vol. 325(C).
    29. Gong, Qiang & Wang, Kun & Fan, Xingli & Fu, Xiaowen & Xiao, Yi-bin, 2018. "International trade drivers and freight network analysis - The case of the Chinese air cargo sector," Journal of Transport Geography, Elsevier, vol. 71(C), pages 253-262.
    30. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    31. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
    32. Webb, Jeremy, 2019. "The future of transport: Literature review and overview," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 1-6.
    33. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    34. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    35. Yihsu Chen & Alexander Whalley, 2012. "Green Infrastructure: The Effects of Urban Rail Transit on Air Quality," American Economic Journal: Economic Policy, American Economic Association, vol. 4(1), pages 58-97, February.
    36. Davies, Huw & Levine, James & Pope, Francis & Bartington, Suzanne, 2024. "Panel session: Increasing the relevance of air quality improvement as part of the planned transformation of the transport system," Transport Policy, Elsevier, vol. 148(C), pages 56-59.
    37. Li, Jiachang & Sun, Xiaoqian & Cong, Wei & Miyoshi, Chikage & Ying, Lee Chui & Wandelt, Sebastian, 2024. "On the air-HSR mode substitution in China: From the carbon intensity reduction perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 180(C).
    38. Wang, Chunyang & Meng, Weidong & Hou, Xinshuo, 2020. "The impact of high-speed rails on urban economy: An investigation using night lighting data of Chinese cities," Research in Transportation Economics, Elsevier, vol. 80(C).
    39. Yuan, Zhiyi & Dong, Changgui & Ou, Xunmin, 2023. "The substitution effect of high-speed rail on civil aviation in China," Energy, Elsevier, vol. 263(PC).
    40. Fang, Wei & Liu, Zhen & Surya Putra, Ahmad Romadhoni, 2022. "Role of research and development in green economic growth through renewable energy development: Empirical evidence from South Asia," Renewable Energy, Elsevier, vol. 194(C), pages 1142-1152.
    41. Yingzhi Xu & Biying Dong & Yan Chen & Hanwen Qin, 2022. "Effect of industrial transfer on carbon lock-in: a spatial econometric analysis of Chinese cities," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 65(6), pages 1024-1055, May.
    42. Patrick Arthur Driscoll, 2014. "Breaking Carbon Lock-In: Path Dependencies in Large-Scale Transportation Infrastructure Projects," Planning Practice & Research, Taylor & Francis Journals, vol. 29(3), pages 317-330, June.
    43. Li, Jiajia & Wang, Pengxin & Ma, Shan, 2024. "The impact of different transportation infrastructures on urban carbon emissions: Evidence from China," Energy, Elsevier, vol. 295(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Peiming & Tian, Xingyue & Zhang, Jiaming & Yu, Siyu & Li, Shiyu & Lin, Chuan & Chen, Litai & Qian, Lei, 2024. "Can the China–Europe Railway Express reduce carbon dioxide emissions? New mechanism of the manufacturing industry substitution effect," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1384-1405.
    2. Li, Zongxin & Wang, Qingyu & Cai, Mengshan & Wong, Wing-Keung, 2023. "Impacts of high-speed rail on the industrial developments of non-central cities in China," Transport Policy, Elsevier, vol. 134(C), pages 203-216.
    3. Zhao, Congyu & Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "How does renewable energy encourage carbon unlocking? A global case for decarbonization," Resources Policy, Elsevier, vol. 83(C).
    4. Yan, Sen & Sun, Xinyu & Zhang, Yurong, 2024. "High-speed railway ripples on the greenness: Insight from urban green vegetation cover," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    5. Dong, Kangyin & Jia, Rongwen & Zhao, Congyu & Wang, Kun, 2023. "Can smart transportation inhibit carbon lock-in? The case of China," Transport Policy, Elsevier, vol. 142(C), pages 59-69.
    6. Shi, Kehan & Wang, Jinfang, 2024. "The influence and spatial effects of high-speed railway construction on urban industrial upgrading: Based on an industrial transfer perspective," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    7. Zhao, Congyu & Dong, Kangyin & Lee, Chien-Chiang, 2024. "Carbon lock-in endgame: Can energy trilemma eradication contribute to decarbonization?," Energy, Elsevier, vol. 293(C).
    8. Gao, Jinfeng & Li, Jianglong, 2025. "High-speed railway, industrial firm sorting, and electricity demand redistribution," Energy Economics, Elsevier, vol. 143(C).
    9. Wei, Wei & Wang, Fengyi & Li, Tao & Li, Fangzhou, 2024. "Comprehensive impacts of high-speed rail and air transport on tourism development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    10. Liu, Mengsha & Jiang, Yan & Wei, Xiaokun & Ruan, Qingsong & Lv, Dayong, 2023. "Effect of high-speed rail on entrepreneurial activities: Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    11. Weng, Shimei & Chen, Jianbao & Tao, Weiliang & Song, Malin, 2025. "Does incentive-based voluntary emission reduction mechanism improve urban carbon unlocking efficiency? A quasi-natural experiment on carbon inclusion policy," Energy, Elsevier, vol. 318(C).
    12. Gao, Yanyan & Zheng, Jianghuai & Wang, Xin, 2022. "Does high-speed rail reduce environmental pollution? Establishment-level evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    13. Weng, Shimei & Song, Malin & Tao, Weiliang & Chen, Jianbao & Chen, Hao, 2025. "Breaking the inertia of urban energy systems: Does the new energy demonstration city construction improve carbon unlocking efficiency?," Renewable Energy, Elsevier, vol. 244(C).
    14. Yun Chen & Da Wang & Wenxi Zhu & Yunfei Hou & Dingli Liu & Chongsen Ma & Tian Li & Yuan Yuan, 2023. "Effective Conditions for Achieving Carbon Unlocking Targets for Transport Infrastructure Development—Joint Analysis Based on PLS-SEM and NCA," IJERPH, MDPI, vol. 20(2), pages 1-22, January.
    15. Wang, Yingzhi & Jiang, Xiushan & Ma, Jihui, 2025. "Emissions reduction of air transport and high-speed rail with policy intervention considering the modal competition in a network market: Environment and welfare implications," Transport Policy, Elsevier, vol. 162(C), pages 379-395.
    16. Mohsen Momenitabar & Raj Bridgelall & Zhila Dehdari Ebrahimi & Mohammad Arani, 2021. "Literature Review of Socioeconomic and Environmental Impacts of High-Speed Rail in the World," Sustainability, MDPI, vol. 13(21), pages 1-27, November.
    17. Lang, Hao & Zhang, Hanxiang & Wu, Zezhou & Chen, Xiangsheng, 2025. "Impact of high-speed rail on green space coverage in China: From the spatial spillover effect and regional disparity perspectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    18. Fan, Xiaomin & Xu, Yingzhi, 2024. "How does the opening of high-speed railway affect the regional pollution gap in China? From the perspective of knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    19. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    20. Guo, Guisong & Li, Xiaodong & Zhu, Chen & Wu, Yankun & Chen, Jian & Chen, Peng & Cheng, Xi, 2025. "Establishing benchmarks to determine the embodied carbon performance of high-speed rail systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:164:y:2025:i:c:p:144-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.