IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125003349.html
   My bibliography  Save this article

Breaking the inertia of urban energy systems: Does the new energy demonstration city construction improve carbon unlocking efficiency?

Author

Listed:
  • Weng, Shimei
  • Song, Malin
  • Tao, Weiliang
  • Chen, Jianbao
  • Chen, Hao

Abstract

The New Energy Demonstration City (NEDC) policy is a vital initiative for energy transformation and sustainable economic development in China. It provides possible effective paths to solve carbon lock-in dilemma. However, existing literature lacks a scientific assessment of this policy's carbon unlocking effects. Using panel data from 283 Chinese cities and a novel evaluation index system to measure carbon unlocking efficiency (CUE) from 2008 to 2021, we analyze the NEDC policy's impact on urban CUE through difference-in-differences and dual machine learning models. The findings show that NEDC policy significantly improves the CUE of pilot cities, which is supported by a series of robustness tests. Technological innovation, energy-saving, and structural upgrading are three key influence channels through which the NEDC policy affects CUE. The impact is more pronounced in cities with larger renewable energy investment, stronger green consumption concept, and non-resource-based cities. Notably, the effectiveness of the policy increases as urban CUE levels rise. Additionally, the new energy vehicle promotion policy can enhance the improvement effect of NEDC policy, whereas the energy-consumption trading policy does not have a similar strengthening effect. Our findings provide useful policy implications to accelerate energy transition and break the carbon lock-in deadlock in China and other developing countries.

Suggested Citation

  • Weng, Shimei & Song, Malin & Tao, Weiliang & Chen, Jianbao & Chen, Hao, 2025. "Breaking the inertia of urban energy systems: Does the new energy demonstration city construction improve carbon unlocking efficiency?," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003349
    DOI: 10.1016/j.renene.2025.122672
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125003349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Zhonghua & Yu, Xuejin & Zhang, Yi, 2023. "Is the construction of new energy demonstration cities conducive to improvements in energy efficiency?," Energy, Elsevier, vol. 263(PA).
    2. van der Meijden, Gerard & Smulders, Sjak, 2018. "Technological Change During The Energy Transition," Macroeconomic Dynamics, Cambridge University Press, vol. 22(4), pages 805-836, June.
    3. Chai, Jian & Tian, Lingyue & Jia, Ruining, 2023. "New energy demonstration city, spatial spillover and carbon emission efficiency: Evidence from China's quasi-natural experiment," Energy Policy, Elsevier, vol. 173(C).
    4. Luo, Yadong & Xue, Qiuzhi & Han, Binjie, 2010. "How emerging market governments promote outward FDI: Experience from China," Journal of World Business, Elsevier, vol. 45(1), pages 68-79, January.
    5. Zhang, Shengling & Dou, Wei & Wu, Zihao & Hao, Yu, 2023. "Does the financial support to rural areas help to reduce carbon emissions? Evidence from China," Energy Economics, Elsevier, vol. 127(PA).
    6. Xu, Guangyue & Yang, Mengge & Li, Shuang & Jiang, Mingqi & Rehman, Hafizur, 2024. "Evaluating the effect of renewable energy investment on renewable energy development in China with panel threshold model," Energy Policy, Elsevier, vol. 187(C).
    7. Matthew Worsham & Robert J. Brecha, 2017. "Carbon lock-in: an obstacle in higher education’s decarbonization pathways," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(3), pages 435-449, September.
    8. Ma, Shiyu & Gao, Yuguo & Li, Hui, 2024. "Digital economic, resource curse and the development of low-carbon transformation," Resources Policy, Elsevier, vol. 91(C).
    9. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    10. Chen, Xu & Li, Zhongshu & Gallagher, Kevin P. & Mauzerall, Denise L., 2021. "Financing carbon lock-in in developing countries: Bilateral financing for power generation technologies from China, Japan, and the United States," Applied Energy, Elsevier, vol. 300(C).
    11. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    12. Song, Haoyang & Hou, Jianhua & Zhang, Yang, 2022. "Catalytic capacity of technological innovation: Multidimensional definition and measurement from the perspective of knowledge spillover," Technology in Society, Elsevier, vol. 68(C).
    13. Yang, Jiayu & Wang, Jianlong & Wang, Weilong & Wu, Haitao, 2024. "Exploring the path to promote energy revolution: Assessing the impact of new energy demonstration city construction on urban energy transition in China," Renewable Energy, Elsevier, vol. 236(C).
    14. Dong, Kangyin & Jia, Rongwen & Zhao, Congyu & Wang, Kun, 2023. "Can smart transportation inhibit carbon lock-in? The case of China," Transport Policy, Elsevier, vol. 142(C), pages 59-69.
    15. Du, Wei & Wang, Jinze & Feng, Yaoxing & Duan, Wenyan & Wang, Zhenglu & Chen, Yuanchen & Zhang, Peng & Pan, Bo, 2023. "Biomass as residential energy in China: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    16. Xu, Yi & Zhao, Fang, 2023. "Impact of energy depletion, human development, and income distribution on natural resource sustainability," Resources Policy, Elsevier, vol. 83(C).
    17. David Powell, 2022. "Quantile regression with nonadditive fixed effects," Empirical Economics, Springer, vol. 63(5), pages 2675-2691, November.
    18. Zhao, Congyu & Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "How does renewable energy encourage carbon unlocking? A global case for decarbonization," Resources Policy, Elsevier, vol. 83(C).
    19. Heleen L. van Soest & Harmen Sytze de Boer & Mark Roelfsema & Michel G.J. den Elzen & Annemiek Admiraal & Detlef P. van Vuuren & Andries F. Hof & Maarten van den Berg & Mathijs J.H.M. Harmsen & David , 2017. "Early action on Paris Agreement allows for more time to change energy systems," Climatic Change, Springer, vol. 144(2), pages 165-179, September.
    20. Kearsley, Aaron & Riddel, Mary, 2010. "A further inquiry into the Pollution Haven Hypothesis and the Environmental Kuznets Curve," Ecological Economics, Elsevier, vol. 69(4), pages 905-919, February.
    21. Liu, Xiaoqian & Wang, Chang'an & Wu, Haitao & Yang, Cunyi & Albitar, Khaldoon, 2023. "The impact of the new energy demonstration city construction on energy consumption intensity: Exploring the sustainable potential of China's firms," Energy, Elsevier, vol. 283(C).
    22. Unruh, Gregory C. & Carrillo-Hermosilla, Javier, 2006. "Globalizing carbon lock-in," Energy Policy, Elsevier, vol. 34(10), pages 1185-1197, July.
    23. Lin, Boqiang & Zhang, Aoxiang, 2024. "Digital finance, regional innovation environment and renewable energy technology innovation: Threshold effects," Renewable Energy, Elsevier, vol. 223(C).
    24. Wang, Xinru & Long, Ruyin & Sun, Qingqing & Chen, Hong & Jiang, Shiyan & Wang, Yujie & Li, Qianwen & Yang, Shuhan, 2024. "Spatial spillover effects and driving mechanisms of carbon emission reduction in new energy demonstration cities," Applied Energy, Elsevier, vol. 357(C).
    25. Che, Shuai & Wang, Jun & Chen, Honghang, 2023. "Can China's decentralized energy governance reduce carbon emissions? Evidence from new energy demonstration cities," Energy, Elsevier, vol. 284(C).
    26. Cheng, Ya & Sinha, Avik & Ghosh, Vinit & Sengupta, Tuhin & Luo, Huawei, 2021. "Carbon Tax and Energy Innovation at Crossroads of Carbon Neutrality: Designing a Sustainable Decarbonization Policy," MPRA Paper 108185, University Library of Munich, Germany, revised 2021.
    27. Wu, Rongxin & Lin, Boqiang, 2021. "Does industrial agglomeration improve effective energy service: An empirical study of China’s iron and steel industry," Applied Energy, Elsevier, vol. 295(C).
    28. Yang, Zhenbing & Shao, Shuai & Xu, Lili & Yang, Lili, 2022. "Can regional development plans promote economic growth? City-level evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    29. Dong, Kangyin & Ren, Xiaohang & Zhao, Jun, 2021. "How does low-carbon energy transition alleviate energy poverty in China? A nonparametric panel causality analysis," Energy Economics, Elsevier, vol. 103(C).
    30. Weilong Wang & Jianlong Wang & Haitao Wu, 2024. "Assessing the potential of energy transition policy in driving renewable energy technology innovation: evidence from new energy demonstration city pilots in China," Economic Change and Restructuring, Springer, vol. 57(5), pages 1-37, October.
    31. Hou, Yaru & Yang, Mian & Ma, Yanran & Zhang, Haiying, 2024. "Study on city's energy transition: Evidence from the establishment of the new energy demonstration cities in China," Energy, Elsevier, vol. 292(C).
    32. Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
    33. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    34. Congyu Zhao & Farhad Taghizadeh-Hesary & Kangyin Dong & Xiucheng Dong, 2024. "Breaking carbon lock-in: the role of green financial inclusion for China," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 67(3), pages 564-593, February.
    35. Chen, Shawn Xiaoguang, 2017. "The effect of a fiscal squeeze on tax enforcement: Evidence from a natural experiment in China," Journal of Public Economics, Elsevier, vol. 147(C), pages 62-76.
    36. Wang, Qiao & Yi, Hongtao, 2021. "New energy demonstration program and China's urban green economic growth: Do regional characteristics make a difference?," Energy Policy, Elsevier, vol. 151(C).
    37. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    38. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    39. Patrick Arthur Driscoll, 2014. "Breaking Carbon Lock-In: Path Dependencies in Large-Scale Transportation Infrastructure Projects," Planning Practice & Research, Taylor & Francis Journals, vol. 29(3), pages 317-330, June.
    40. Pirlogea, Corina & Cicea, Claudiu, 2012. "Econometric perspective of the energy consumption and economic growth relation in European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5718-5726.
    41. Chen, Jianbao & Weng, Shimei & Tao, Weiliang & Song, Malin & Zhang, Linling, 2024. "Measuring carbon neutrality and exploring the threshold effects of its driving factors: Evidence from China," Applied Energy, Elsevier, vol. 373(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Zheng & Xu, Yingzhi, 2025. "Can new energy demonstration cities break through the multiple carbon lock-in? Evidence based on double machine learning," Energy Policy, Elsevier, vol. 199(C).
    2. Zhao, Congyu & Dong, Kangyin & Lee, Chien-Chiang, 2024. "Carbon lock-in endgame: Can energy trilemma eradication contribute to decarbonization?," Energy, Elsevier, vol. 293(C).
    3. Liu, Jiamin & Zhang, Jiaoning & Ma, Xiaoyu & Zhao, Bin & Zhang, Mengyu, 2024. "The road to sustainable development: Can the new energy demonstration city policy promote the industrial structure transformation?," Renewable Energy, Elsevier, vol. 237(PB).
    4. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    5. Chen, Hongfei & Niu, Dongxiao & Gao, Yibo, 2025. "Research on the impact of energy transition policies on green total factor productivity of Chinese high-energy-consuming enterprises," Energy, Elsevier, vol. 319(C).
    6. Yang, Jiayu & Wang, Jianlong & Wang, Weilong & Wu, Haitao, 2024. "Exploring the path to promote energy revolution: Assessing the impact of new energy demonstration city construction on urban energy transition in China," Renewable Energy, Elsevier, vol. 236(C).
    7. Weng, Shimei & Chen, Jianbao & Tao, Weiliang & Song, Malin, 2025. "Does incentive-based voluntary emission reduction mechanism improve urban carbon unlocking efficiency? A quasi-natural experiment on carbon inclusion policy," Energy, Elsevier, vol. 318(C).
    8. Mao Chai & Chao Wu & Yusen Luo & Claudia Nyarko Mensah, 2025. "New Energy Demonstration City Policy and Corporate Green Innovation: From the Perspective of Industrial and Regional Spillover Effect," Sustainability, MDPI, vol. 17(7), pages 1-23, April.
    9. Xiong, Zhiqiao & Hu, Jin & Li, Wenfeng, 2024. "From policy to practice: Enhancing enterprise productivity through energy transition initiatives," Energy, Elsevier, vol. 311(C).
    10. Zou, Tong & Li, Fanrong & Guo, Pibin, 2024. "Advancing effective energy transition: The effects and mechanisms of China's dual-pilot energy policies," Energy, Elsevier, vol. 307(C).
    11. Weicheng Xu & Hanxia Li, 2024. "Can Digital Finance Enable China’s Industrial Carbon Unlocking under Environmental Regulatory Constraints? Joint Tests of Regression Analysis and Qualitative Comparative Analysis," Sustainability, MDPI, vol. 16(10), pages 1-37, May.
    12. Zhao, Congyu & Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "How does renewable energy encourage carbon unlocking? A global case for decarbonization," Resources Policy, Elsevier, vol. 83(C).
    13. Dong, Kangyin & Jia, Rongwen & Zhao, Congyu & Wang, Kun, 2023. "Can smart transportation inhibit carbon lock-in? The case of China," Transport Policy, Elsevier, vol. 142(C), pages 59-69.
    14. Hou, Yaru & Yang, Mian & Ma, Yanran & Zhang, Haiying, 2024. "Study on city's energy transition: Evidence from the establishment of the new energy demonstration cities in China," Energy, Elsevier, vol. 292(C).
    15. Du, Gang & Li, Wendi, 2022. "Does innovative city building promote green logistics efficiency? Evidence from a quasi-natural experiment with 285 cities," Energy Economics, Elsevier, vol. 114(C).
    16. repec:spo:wpmain:info:hdl:2441/14g286e42n8bl9is6h16b18kes is not listed on IDEAS
    17. Che, Shuai & Wang, Jun & Chen, Honghang, 2023. "Can China's decentralized energy governance reduce carbon emissions? Evidence from new energy demonstration cities," Energy, Elsevier, vol. 284(C).
    18. Song, Yang & Pang, Xiaoqian & Zhang, Zhiyuan & Sahut, Jean-Michel, 2024. "Can the new energy demonstration city policy promote corporate green innovation capability?," Energy Economics, Elsevier, vol. 136(C).
    19. Wen, Ruan & Heng, Zhang & Jin, Yang, 2025. "How to break carbon lock-in of thermal power industry in China—A tripartite evolutionary game analysis," Applied Energy, Elsevier, vol. 377(PB).
    20. Yun Chen & Da Wang & Wenxi Zhu & Yunfei Hou & Dingli Liu & Chongsen Ma & Tian Li & Yuan Yuan, 2023. "Effective Conditions for Achieving Carbon Unlocking Targets for Transport Infrastructure Development—Joint Analysis Based on PLS-SEM and NCA," IJERPH, MDPI, vol. 20(2), pages 1-22, January.
    21. He, Haonan & Wang, Haomiao & Wang, Shanyong, 2025. "High-speed rail network and regional carbon emissions: Carbon lock-in or unlocking?," Transport Policy, Elsevier, vol. 164(C), pages 144-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.